THE WORLD OF TRIANGULAR PARTITIONS

SAFARUL RASHEED

Indian Institute of Science Education and Research Kolkata

NOVEMBER 9, 2023

A STROLL

PARTITION

PARTITION

For $n, p \in \mathbb{N}$, a **partition** of n into p parts is a weakly decreasing sequence of positive integers $\lambda = \lambda_1 \lambda_2 \cdots \lambda_p$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_p = n$.

PARTITION

For $n, p \in \mathbb{N}$, a **partition** of n into p parts is a weakly decreasing sequence of positive integers $\lambda = \lambda_1 \lambda_2 \cdots \lambda_p$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_p = n$.

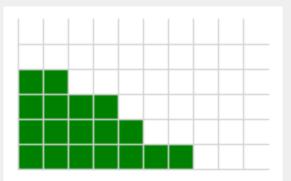


Figure: Ferrers diagram of the partition 7542

CONJUGATE

CONJUGATE

The conjugate of λ is denoted λ' .

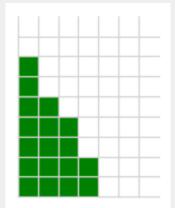


Figure: The diagram of 4433211, the conjugate of 7542

Let $\lambda = \lambda_1 \lambda_2 \cdots \lambda_p$ be a partition (of n into p parts).

Let
$$\lambda = \lambda_1 \lambda_2 \cdots \lambda_p$$
 be a partition (of n into p parts).
length = $l(\lambda) = p$ = number of parts

Let
$$\lambda = \lambda_1 \lambda_2 \cdots \lambda_p$$
 be a partition (of n into p parts).
length = $l(\lambda) = p$ = number of parts
size = $|\lambda| = n = \lambda_1 + \lambda_2 + \cdots + \lambda_p$

Given $r, s \in \mathbb{R}^+$, we define the partition τ_{rs} as follows. $(\tau_{rs})_i = \lfloor r - jr/s \rfloor$ for $1 \le j \le \lfloor s \rfloor$

Given $r, s \in \mathbb{R}^+$, we define the partition τ_{rs} as follows. $(\tau_{rs})_i = \lfloor r - jr/s \rfloor$ for $1 \le j \le \lfloor s \rfloor$

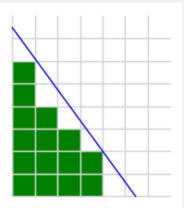


Figure: The diagram of $\tau_{rs} = 443211$ for r = 5.5, s = 7.5

A partition $\tau = \tau_1 \tau_2 \cdots \tau_p$ is said to be **triangular** if there exist $r, s \in \mathbb{R}^+$ such that

$$au_{j} = \lfloor r - jr/s
floor$$
 for 1 $\leq j \leq \lfloor s
floor$

or equivalently, $\tau = \tau_{rs}$

A partition $\tau = \tau_1 \tau_2 \cdots \tau_p$ is said to be **triangular** if there exist $r, s \in \mathbb{R}^+$ such that

$$au_j = \lfloor r - jr/s
floor$$
 for 1 $\leq j \leq \lfloor s
floor$

or equivalently, $\tau = \tau_{rs}$

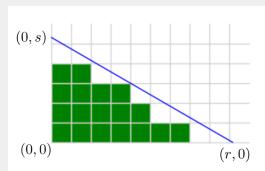


Figure: Ferrers diagram of the triangular partition 7542

If $\tau = \tau_{rs}$, we say that x/r + y/s = 1 is a **cutting line** for τ .

If $\tau = \tau_{rs}$, we say that x/r + y/s = 1 is a **cutting line** for τ .

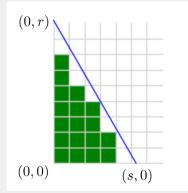
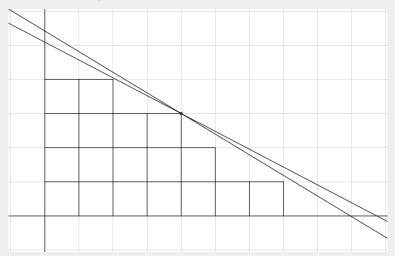


Figure: The conjugate of a triangular partition is triangular. $\tau'_{rs} = \tau_{sr}$

A triangular partition admits a *convex* set of possible slopes for its cutting lines.

A triangular partition admits a *convex* set of possible slopes for its cutting lines.



For $M \in \mathbb{N}$, the triangular partition $M(M - 1)(M - 2) \cdots 321$ will be referred to as a **staircase partition**.

For $M \in \mathbb{N}$, the triangular partition $M(M - 1)(M - 2) \cdots 321$ will be referred to as a **staircase partition**.

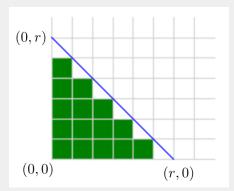


Figure: A staircase partition

• $\tau = \tau_{rr}$ for some $r > 0 \iff \tau$ is a staircase partition.

■
$$\tau = \tau_{rr}$$
 for some $r > 0 \iff \tau$ is a staircase partition.
 $\tau = \tau_{rr} \implies \tau_j = \lfloor r - j \rfloor \implies \tau_j - \tau_{j+1} = \lfloor r - j \rfloor - \lfloor r - (j+1) \rfloor$
 $\implies \tau_j - \tau_{j+1} = \lfloor r - j \rfloor - \lfloor r - j - 1 \rfloor = 1$

•
$$\tau = \tau_{rr}$$
 for some $r > 0 \iff \tau$ is a staircase partition.
 $\tau = \tau_{rr} \implies \tau_j = \lfloor r - j \rfloor \implies \tau_j - \tau_{j+1} = \lfloor r - j \rfloor - \lfloor r - (j+1) \rfloor$
 $\implies \tau_j - \tau_{j+1} = \lfloor r - j \rfloor - \lfloor r - j - 1 \rfloor = 1$

 $au = M(M-1)(M-2)\cdots 321 \iff au$ is a staircase partition

$$\tau = \tau_{\mathsf{M}+\mathsf{1},\mathsf{M}+\mathsf{1}} \iff \tau_j = \mathsf{M}+\mathsf{1}-j = \lfloor \mathsf{M}+\mathsf{1}-j \rfloor \iff$$

Addition of Partitions

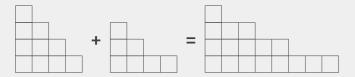
$$\lambda + \mu = (\lambda_1 + \mu_1)(\lambda_2 + \mu_2)\cdots(\lambda_s + \mu_s)(\lambda_{s+1})\cdots(\lambda_p)$$

$$\lambda + \mu = (\lambda_1 + \mu_1)(\lambda_2 + \mu_2) \cdots (\lambda_s + \mu_s)(\lambda_{s+1}) \cdots (\lambda_p)$$

For example, 4321 + 421 = 8531.

$$\lambda + \mu = (\lambda_1 + \mu_1)(\lambda_2 + \mu_2) \cdots (\lambda_s + \mu_s)(\lambda_{s+1}) \cdots (\lambda_p)$$

For example, 4321 + 421 = 8531.



$$\lambda + \mu = (\lambda_1 + \mu_1)(\lambda_2 + \mu_2)\cdots(\lambda_s + \mu_s)(\lambda_{s+1})\cdots(\lambda_p)$$

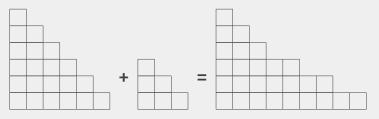
For example, 4321 + 421 = 8531.

$$l(\lambda + \mu) = \max\{l(\lambda), l(\mu)\}$$
$$|\lambda + \mu| = |\lambda| + |\mu|$$

642 + 421 = (10)63

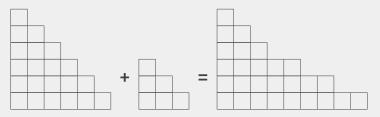
642 + 421 = (10)63triangular + triangular = triangular

642 + 421 = (10)63triangular + triangular = triangular



654321 + 321 = 975321

642 + 421 = (10)63triangular + triangular = triangular



654321 + 321 = 975321

triangular + triangular = not triangular

The Question. For triangular partitions λ and μ , when is $\lambda + \mu$ a triangular partition?

AN ENCOUNTER

Properties of Triangular Partitions and their Generalizations Alejandro Basilio Galván Pérez-Ilzarbe Bachelor Thesis, Universitat Politècnica de Catalunya, 2023

A triangular partition is said to be **wide** if it admits a cutting line x/r + y/s = 1 with r > s

A triangular partition is said to be **wide** if it admits a cutting line x/r + y/s = 1 with r > s. It is said to be **tall** if it admits a cutting line x/r' + y/s' = 1 with r' < s'.

A triangular partition is said to be **wide** if it admits a cutting line x/r + y/s = 1 with r > s. It is said to be **tall** if it admits a cutting line x/r' + y/s' = 1 with r' < s'.

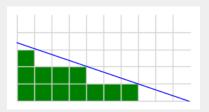


Figure: wide

A triangular partition is said to be **wide** if it admits a cutting line x/r + y/s = 1 with r > s. It is said to be **tall** if it admits a cutting line x/r' + y/s' = 1 with r' < s'.

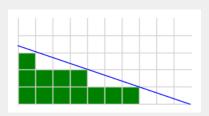


Figure: wide

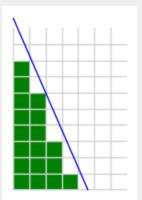


Figure: tall

Every triangular partition which is not wide must be tall.

Every triangular partition which is not wide must be tall.

$$\frac{x}{r} + \frac{y}{s} = 1$$
 is a cutting line $\implies r = s$

Every triangular partition which is not wide must be tall.

$$\frac{x}{r} + \frac{y}{s} = 1$$
 is a cutting line $\implies r = s$

 $\frac{x}{r} + \frac{y}{s + \varepsilon} = 1$ is also a cutting line for ε tiny enough.

$$\implies \tau_{rs} = \tau_{r(s+\varepsilon)}$$

A LEMMA

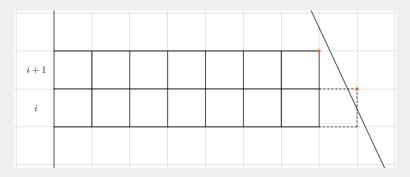
Let $p \in \mathbb{N}$ and let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition. Then,

- τ is wide if and only if there is no $i \in \{1, ..., p-1\}$ such that $\tau_i = \tau_{i+1}$.
- $\blacksquare \ \tau$ is tall if and only if τ' is wide.
- τ is wide and tall if and only if it is a staircase partition.

AND ITS PROOF

AND ITS PROOF

■ τ is wide if and only if there is no $i \in \{1, ..., p-1\}$ such that $\tau_i = \tau_{i+1}$.



• τ is tall if and only if τ' is wide.

$$\tau'_{\rm rs} = \tau_{\rm sr}$$

 $\blacksquare \ \tau$ is wide and tall if and only if it is a staircase partition.

au is wide and tall $\iff au = au_{ab} = au_{a'b'}$ with a > b & a' < b'

$$\iff \tau = \tau_{rr}$$
 for some $r > 0$

• τ is tall if and only if τ' is wide.

$$\tau'_{\rm rs} = \tau_{\rm sr}$$

 $\blacksquare \ \tau$ is wide and tall if and only if it is a staircase partition.

au is wide and tall $\iff au = au_{ab} = au_{a'b'}$ with a > b & a' < b'

$$\iff \tau = \tau_{rr}$$
 for some $r > 0$

 $au = au_{rr}$ for some $r > 0 \iff \tau$ is a staircase partition

AND ITS PROOF

■ τ is wide if and only if there is no $i \in \{1, ..., p-1\}$ such that $\tau_i = \tau_{i+1}$.

Let $p \in \mathbb{N}$ and let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition. Then,

- τ is wide if and only if there is no $i \in \{1, ..., p-1\}$ such that $\tau_i = \tau_{i+1}$.
- τ is tall if and only if τ' is wide.
- τ is wide and tall if and only if it is a staircase partition.

Words

 $A^* = \{ words \text{ over an } alphabet A \}$

 $A^* = \{ words \text{ over an } alphabet A \}$

If $u = u_1 u_2 \dots u_k$, $v = v_1 v_2 \dots v_s \in A^*$, we define **concatenation** as

 $U \bullet V = UV = U_1U_2 \dots U_kV_1V_2 \dots V_s$

 $A^* = \{ words \text{ over an } alphabet A \}$

If $u = u_1 u_2 \dots u_k$, $v = v_1 v_2 \dots v_s \in A^*$, we define **concatenation** as

 $u \bullet v = uv = u_1u_2 \dots u_kv_1v_2 \dots v_s$

 \implies A* is a monoid, in fact the *free monoid on* A

Let $w = w_1 w_2 \dots w_k \in A^*$.

Let $w = w_1 w_2 \dots w_k \in A^*$.

■ length = |w| = k = number of letters in w

- Let $w = w_1 w_2 \dots w_k \in A^*$.
 - **length** = |w| = k = number of letters in w
 - A word *v* ∈ A* is said to be a *factor* of *w* if there exist *u*, *x* ∈ A* such that *w* = *uvx*.

- Let $w = w_1 w_2 \dots w_k \in A^*$.
 - **length** = |w| = k = number of letters in w
 - A word $v \in A^*$ is said to be a *factor* of w if there exist $u, x \in A^*$ such that w = uvx.

For $b \in A$, $|w|_b =$ number of letters in w which are b

$$A=\{0,1\}$$

$$\mathsf{A} = \{\mathsf{O},\mathsf{1}\}$$

W = 10110 $|W| = 5, |W|_1 = 3, |W|_0 = 2$

$$\mathsf{A} = \{\mathsf{0},\mathsf{1}\}$$

w = 10110 $|w| = 5, |w|_1 = 3, |w|_0 = 2$

If *u* is a factor of *w*,

$$\blacksquare |u| = 2 \implies |u|_1 \in \{1,2\}$$

$$\mathsf{A} = \{\mathsf{0},\mathsf{1}\}$$

$$w = 10110$$
 $|w| = 5, |w|_1 = 3, |w|_0 = 2$

If *u* is a factor of *w*,

$$|u| = 2 \implies |u|_1 \in \{1, 2\}$$
$$|u| = 3 \implies |u|_1 = 2$$

$$\mathsf{A} = \{\mathsf{0},\mathsf{1}\}$$

$$w = 10110$$
 $|w| = 5, |w|_1 = 3, |w|_0 = 2$

If *u* is a factor of *w*,

$$|u| = 2 \implies |u|_1 \in \{1, 2\}$$
$$|u| = 3 \implies |u|_1 = 2$$
$$|u| = 4 \implies |u|_1 \in \{2, 3\}$$

$$\mathsf{A} = \{\mathsf{0},\mathsf{1}\}$$

$$w = 10110$$
 $|w| = 5, |w|_1 = 3, |w|_0 = 2$

If *u* is a factor of *w*,

$$\blacksquare |u| = 2 \implies |u|_1 \in \{1,2\}$$

$$\blacksquare |u| = 3 \implies |u|_1 = 2$$

$$\blacksquare |u| = 4 \implies |u|_1 \in \{2,3\}$$

A word $w = w_1 w_2 \dots w_k$ is said to be **balanced** if for any two factors u, v of w of the same length, $||u|_1 - |v|_1| \le 1$.

QUASI-BALANCED WORDS

A word $w = w_1 w_2 \dots w_k$ is said to be **quasi-balanced** if at least one of the following holds :

■ w is balanced

•
$$w_1 = 0$$
 and $w' = w_2 w_3 \dots w_k$ is balanced

A word $w = w_1 w_2 \dots w_k$ is said to be **quasi-balanced** if at least one of the following holds :

■ w is balanced

•
$$w_1 = 0$$
 and $w' = w_2 w_3 \dots w_k$ is balanced

 $\mathcal{QB}_{o} = \{ quasi-balanced \ words \ w \ with \ |w|_{o} \neq o \}$

A word $w = w_1 w_2 \dots w_k$ is said to be **quasi-balanced** if at least one of the following holds :

■ w is balanced

•
$$w_1 = 0$$
 and $w' = w_2 w_3 \dots w_k$ is balanced

 $\mathcal{QB}_{O} = \{$ quasi-balanced words w with $|w|_{O} \neq O \}$

$$111\dots111\sim000\dots000$$

THE SET OF STEPS

Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition.

Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition.

If $p \ge 2$, $S_{\tau} = \{\tau_{p-1} - \tau_p, \tau_{p-2} - \tau_{p-1}, \dots \tau_2 - \tau_3, \tau_1 - \tau_2\}$

Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition. If $p \ge 2$, $S_{\tau} = \{\tau_{p-1} - \tau_p, \tau_{p-2} - \tau_{p-1}, \dots, \tau_2 - \tau_3, \tau_1 - \tau_2\}$ If p = 1, $S_{\tau} = \{\tau_1\}$

Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a triangular partition. If $p \ge 2$, $S_{\tau} = \{\tau_{p-1} - \tau_p, \tau_{p-2} - \tau_{p-1}, \dots, \tau_2 - \tau_3, \tau_1 - \tau_2\}$ If p = 1, $S_{\tau} = \{\tau_1\}$

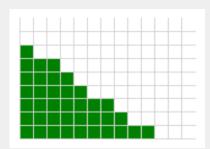


Figure: $\tau = (10)875431$

Let
$$\tau = \tau_1 \tau_2 \cdots \tau_p$$
 be a triangular partition.
If $p \ge 2$, $S_{\tau} = \{\tau_{p-1} - \tau_p, \tau_{p-2} - \tau_{p-1}, \dots, \tau_2 - \tau_3, \tau_1 - \tau_2\}$
If $p = 1$, $S_{\tau} = \{\tau_1\}$

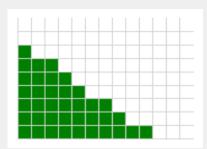


Figure: $\tau = (10)875431$

$\mathsf{S}_{\tau} = \{\mathsf{1},\mathsf{2}\}$

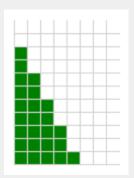
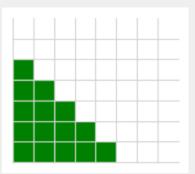


Figure: $\lambda = 544332211$

Figure: $\lambda = 544332211$

$$\mathsf{S}_{\lambda} = \{\mathsf{0},\mathsf{1}\}$$



$$S_{\mu} = \{1\}$$

Figure: $\mu = 54321$

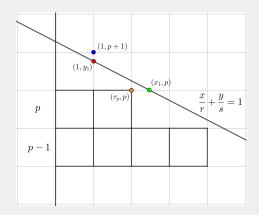
Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a wide triangular partition. Then, there exists $m \in \mathbb{N}$ such that $\tau_p \leq m + 1$ and either $S_{\tau} = \{m\}$ or $S_{\tau} = \{m, m + 1\}$.

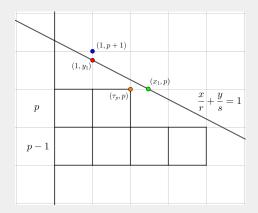
Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a wide triangular partition. Then, there exists $m \in \mathbb{N}$ such that $\tau_p \leq m + 1$ and either $S_{\tau} = \{m\}$ or $S_{\tau} = \{m, m + 1\}$.

Proof. If p = 1, $S_{\tau} = \{\tau_1\} \implies m = \tau_1$

Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a wide triangular partition. Then, there exists $m \in \mathbb{N}$ such that $\tau_p \leq m + 1$ and either $S_{\tau} = \{m\}$ or $S_{\tau} = \{m, m + 1\}$.

Proof. If
$$p = 1$$
, $S_{\tau} = \{\tau_1\} \implies m = \tau_1$
 $\tau = \tau_{rs} \implies \tau_i = \lfloor r - ir/s \rfloor$
 $x - 1 < \lfloor x \rfloor \le x$ for $x \in \mathbb{R}$
 $\tau_i - \tau_{i+1} = \lfloor r - ir/s \rfloor - \lfloor r - (i+1)r/s \rfloor$
 $r - ir/s - 1 - (r - (i+1)r/s) < \tau_i - \tau_{i+1} < r - ir/s - (r - (i+1)r/s - 1)$
 $\implies r/s - 1 < \tau_i - \tau_{i+1} < r/s + 1$
 $\implies |S_{\tau}| \le 2$





 $y_1 = (1-1/r)s < p+1 \implies 1-1/r < p/s+1/s \implies 1-p/s < 1/r+1/s$ $\tau_p \le x_1 = (1-p/s)r \implies \tau_p \le (1/r+1/s)r = 1+r/s < m+2$ $\implies \tau_p \le m+1$

The Lemma Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a wide triangular partition. Then, there exists $m \in \mathbb{N}$ such that $\tau_p \leq m + 1$ and either $S_{\tau} = \{m\}$ or $S_{\tau} = \{m, m + 1\}$.

- **The Lemma** Let $\tau = \tau_1 \tau_2 \cdots \tau_p$ be a wide triangular partition. Then, there exists $m \in \mathbb{N}$ such that $\tau_p \leq m + 1$ and either $S_{\tau} = \{m\}$ or $S_{\tau} = \{m, m + 1\}$.
 - Its Twin Let $\tau = \tau_1 \tau_2 \dots \tau_p$ be a tall triangular partition which is not a staircase. Then, $\tau_p = 1$ and either $S_{\tau} = \{0\}$ or $S_{\tau} = \{0, 1\}$.

• $\chi_1(\tau) = \tau_p$

•
$$\chi_1(\tau) = \tau_p$$

• $\chi_2(\tau) = \begin{cases} m & \text{if } S_\tau = \{m, m+1\} \text{ or } S_\tau = \{m\} \text{ and } \chi_1(\tau) \ge m \\ m-1 & \text{if } S_\tau = \{m\} \text{ and } \chi_1(\tau) \le m-1 \end{cases}$

• $\chi_1(\tau) = \tau_p$ • $\chi_2(\tau) = \begin{cases} m & \text{if } S_\tau = \{m, m+1\} \text{ or } S_\tau = \{m\} \text{ and } \chi_1(\tau) \ge m \\ m-1 & \text{if } S_\tau = \{m\} \text{ and } \chi_1(\tau) \le m-1 \end{cases}$

•
$$\chi_3(\tau) = W_1 W_2 \dots W_p$$

For $i \in \{2, \dots, p\}$, $W_i = 1 \iff \tau_{p-i+1} - \tau_{p-i+2} = \chi_2(\tau) + 1$
 $W_1 = 1 \iff \tau_p = \chi_2(\tau) + 1$

$$S_{\tau} = \{1, 2\}$$
$$\chi_1(\tau) = 1$$
$$\chi_2(\tau) = 1$$
$$\chi_3(\tau) = 010010^{-1}$$

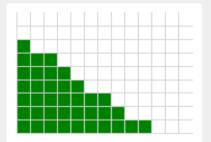


Figure: $\tau = (10)875431$

$$S_{\lambda} = \{0, 1\}$$
$$\chi_{1}(\lambda) = 1$$
$$\chi_{2}(\lambda) = 0$$
$$\chi_{3}(\lambda) = 10101010$$

1

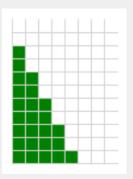


Figure: $\lambda = 544332211$

$$S_{\mu} = \{1\}$$

 $\chi_{1}(\mu) = 1$
 $\chi_{2}(\mu) = 1$
 $\chi_{3}(\mu) = 00000$

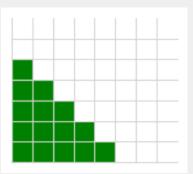


Figure: μ = 54321

The map $\chi = (\chi_1, \chi_2, \chi_3)$ is a bijection between the set of wide triangular partitions and the set

 $\{(\ell_0,\ell,w)\in\mathbb{N}\times\mathbb{N}\times\mathcal{QB}_0:\ell_0=\ell+1\text{ if }w_1=1;\ \ell_0=\ell\text{ if }w=0\ldots 0;\ \ell_0\leq\ell\text{ otherwise}\}.$

The map $\chi = (\chi_1, \chi_2, \chi_3)$ is a bijection between the set of wide triangular partitions and the set

 $\{(\ell_0,\ell,w)\in\mathbb{N}\times\mathbb{N}\times\mathcal{QB}_0:\ell_0=\ell+1\text{ if }w_1=1;\ \ell_0=\ell\text{ if }w=0\ldots 0;\ \ell_0\leq\ell\text{ otherwise}\}.$

The map $\chi = (\chi_1, \chi_2, \chi_3)$ is a bijection between the set of tall triangular partitions which are not staircases and the set

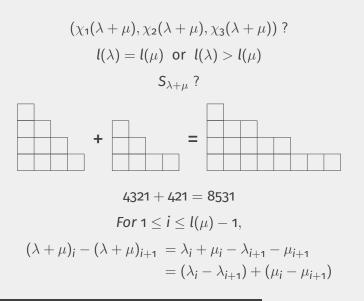
$$\{(1, 0, W) : W \in \mathcal{QB}_0 \& W_1 = 1\}.$$

AN EFFORT

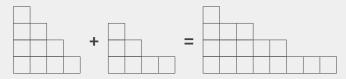
The Question. For triangular partitions λ and μ , when is $\lambda + \mu$ a triangular partition?

The Method

The Method



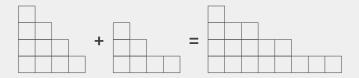
Тне Метнор



4321 + 421 = 8531For $1 \le i \le l(\mu) - 1$, $(\lambda + \mu)_i - (\lambda + \mu)_{i+1} = \lambda_i + \mu_i - \lambda_{i+1} - \mu_{i+1}$ $= (\lambda_i - \lambda_{i+1}) + (\mu_i - \mu_{i+1})$ $(\lambda + \mu)_{l(\mu)} - (\lambda + \mu)_{l(\mu)+1} = (\lambda_{l(\mu)} - \lambda_{l(\mu)+1}) + \mu_{l(\mu)}$ $= (\lambda_{l(\mu)} - \lambda_{l(\mu)+1}) + (\mu)$

For
$$l(\mu) + 1 \le j \le l(\lambda) - 1$$
,
 $(\lambda + \mu)_j - (\lambda + \mu)_{j+1} = \lambda_j - \lambda_{j+1}$

The Method

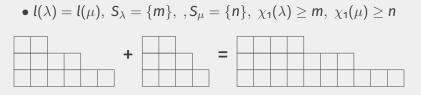


4321 + 421 = 8531

$$\chi_{1}(\lambda + \mu) = (\lambda + \mu)_{l(\lambda)} = \lambda_{l(\lambda)} + \mu_{l(\lambda)}$$
$$= \begin{cases} \chi_{1}(\lambda) + \chi_{1}(\mu) & \text{if } l(\lambda) = l(\mu) \\ \chi_{1}(\lambda) & \text{if } l(\lambda) > l(\mu) \end{cases}$$

DEMONSTRATION I

• Let λ be a wide triangular partition and μ be a partition with $l(\lambda) \ge l(\mu)$. If $\lambda + \mu$ is triangular, then $\lambda + \mu$ is a wide triangular partition.



642 + 432 = (10)74

DEMONSTRATION I

DEMONSTRATION I

•
$$l(\lambda) = l(\mu), \ S_{\lambda} = \{m\}, \ S_{\mu} = \{n\}, \ \chi_1(\lambda) \ge m, \ \chi_1(\mu) \ge n$$

$$S_{\lambda+\mu} = \{m+n\}, \ \chi_1(\lambda+\mu) = \chi_1(\lambda) + \chi_1(\mu) \ge m+n$$

$$\chi_2(\lambda+\mu) = m+n$$

$$\chi_3(\lambda+\mu) = \begin{cases} 1000...000 & \text{if } \chi_1(\lambda) = m \& \ \chi_1(\mu) = n+1 \text{ or } \\ \chi_1(\lambda) = m+1 \& \ \chi_1(\mu) = n \\ 0000...000 & \text{if } \chi_1(\lambda) = m \& \ \chi_1(\mu) = n \end{cases}$$

A Bad Case

$$\chi_1(\lambda) = m + 1 \& \chi_1(\mu) = n + 1$$
 would imply that
 $\chi_1(\lambda + \mu) = m + n + 2 \nleq m + n + 1.$

- $l(\lambda) = l(\mu), \ S_{\lambda} = \{m\}, \ S_{\mu} = \{n\}, \ \chi_{1}(\lambda) \ge m, \ \chi_{1}(\mu) \ge n$
- \blacksquare (*m* + *n* + 1, *m* + *n*, 1000...000)
- \blacksquare (*m* + *n*, *m* + *n*, 0000...000)

•
$$l(\lambda) = l(\mu), S_{\lambda} = \{m\}, S_{\mu} = \{n\}, \chi_1(\lambda) \ge m, \chi_1(\mu) \ge n$$

$$\blacksquare (m+n+1, m+n, 1000...000)$$

 \blacksquare (*m* + *n*, *m* + *n*, 0000...000)

 $\{(\ell_0, \ell, w) \in \mathbb{N} \times \mathbb{N} \times \mathcal{QB}_0 : \ell_0 = \ell + 1 \text{ if } w_1 = 1; \ \ell_0 = \ell \text{ if } w = 0 \dots 0; \ \ell_0 \leq \ell \text{ otherwise}\}.$

DEMONSTRATION II

•
$$l(\lambda) = l(\mu), \ S_{\lambda} = \{m\}, \ S_{\mu} = \{n, n+1\}, \ \chi_{1}(\lambda) \ge m$$

$$S_{\lambda+\mu} = \{m+n, m+n+1\}, \ \chi_1(\lambda+\mu) = \chi_1(\lambda) + \chi_1(\mu) \ge m + \chi_1(\mu)$$
$$\chi_2(\lambda+\mu) = m + n$$
$$\chi_3(\lambda+\mu) = \begin{cases} \chi_3(\mu) & \text{if } \chi_1(\lambda) = m \\ 1 * \bullet \chi_3(\mu) & \text{if } \chi_1(\lambda) = m + 1 \& \chi_1(\mu) = n \\ \chi_3(\mu) & \text{if } \chi_1(\lambda) = m + 1 \& \chi_1(\mu) \le n - 1 \end{cases}$$

Still A Bad Case

 $\chi_1(\lambda) = m + 1 \& \chi_1(\mu) = n + 1$ would imply that $\chi_1(\lambda + \mu) = m + n + 2 \nleq m + n + 1.$

•
$$l(\lambda) = l(\mu), S_{\lambda} = \{m\}, S_{\mu} = \{n, n+1\}, \chi_{1}(\lambda) \ge m$$

= $(m + \chi_{1}(\mu), m + n, \chi_{3}(\mu))$
= $(m + n + 1, m + n, 1 * \bullet \chi_{3}(\mu))$

$$\blacksquare (\leq m+n, m+n, \chi_3(\mu))$$

•
$$l(\lambda) = l(\mu), S_{\lambda} = \{m\}, S_{\mu} = \{n, n+1\}, \chi_1(\lambda) \ge m$$

$$(m + \chi_1(\mu), m + n, \chi_3(\mu))$$

$$(m + n + 1, m + n, 1 * \bullet \chi_3(\mu))$$

$$(\leq m + n, m + n, \chi_3(\mu))$$

A word $w = w_1 w_2 \dots w_k$ is said to be **quasi-balanced** if at least one of the following holds :

w is balanced

•
$$w_1 = 0$$
 and $w' = w_2 w_3 \dots w_k$ is balanced

•
$$l(\lambda) = l(\mu), S_{\lambda} = \{m\}, S_{\mu} = \{n, n+1\}, \chi_{1}(\lambda) \ge m$$

= $(m + \chi_{1}(\mu), m + n, \chi_{3}(\mu))$
= $(m + n + 1, m + n, 1 * \bullet \chi_{3}(\mu))$
= $(\le m + n, m + n, \chi_{3}(\mu))$

A Problem. Can we characterize all balanced words w for which 1w is a balanced word?

OPERATIONS ON WORDS

OPERATIONS ON WORDS

For words $u = u_1 u_2 \dots u_k$ and $v = v_1 v_2 \dots v_k$, we define the **OR** addition as follows.

$$u \bigoplus v = (u_1 + v_1)(u_2 + v_2) \dots (u_k + v_k)$$

In particular, we have that $1 \bigoplus 0 = 0 \bigoplus 1 = 1 \bigoplus 1 = 1$ and $0 \bigoplus 0 = 0.$

OPERATIONS ON WORDS

For words $u = u_1 u_2 \dots u_k$ and $v = v_1 v_2 \dots v_k$, we define the **OR** addition as follows.

$$u \bigoplus v = (u_1 + v_1)(u_2 + v_2) \dots (u_k + v_k)$$

In particular, we have that $1 \bigoplus 0 = 0 \bigoplus 1 = 1 \bigoplus 1 = 1$ and $0 \bigoplus 0 = 0.$

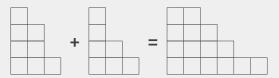
For words $u = u_1 u_2 \dots u_k$ and $v = v_1 v_2 \dots v_k$, we define the **AND addition** as follows.

$$u \boxplus v = (u_1v_1)(u_2v_2)\dots(u_kv_k)$$

In particular, we have that $1 \bigoplus 0 = 0 \bigoplus 1 = 0 \bigoplus 0 = 0$ and $1 \bigoplus 1 = 1$.

56

•
$$l(\lambda) = l(\mu), \ S_{\lambda} = \{0, 1\}, \ S_{\mu} = \{0, 1\}, \ 0 \not\leftrightarrow 0, \ 1 \leftrightarrow 1$$



3221 + 3211 = 6432

$$S_{\lambda+\mu} = \{1, 2\}, \ \chi_1(\lambda+\mu) = \chi_1(\lambda) + \chi_1(\mu) = 2$$
$$\chi_2(\lambda+\mu) = 1$$
$$\chi_3(\lambda+\mu) = \chi_3(\lambda) \boxplus \chi_3(\mu)$$

Another Problem. Can we characterize all balanced words u and v with $u_1 = v_1 = 1$ such that $u \boxplus v$ is a balanced word?

KATASTROPHE

Let λ and μ be wide triangular partitions with $l(\lambda) \ge l(\mu)$, $S_{\lambda} = \{m\}$ and $S_{\mu} = \{n\}$ for $m, n \in \mathbb{N}$. Then, $\lambda + \mu$ is a triangular partition unless one of the following holds.

$$\begin{array}{l} \bullet \ l(\lambda) = l(\mu), \ \chi_1(\lambda) = m + 1 & \& \ \chi_1(\mu) = n + 1 \\ \bullet \ l(\mu) = 1, \ l(\lambda) - l(\mu) \ge 2 & \& \ n \ge 2 \\ \bullet \ l(\mu) \ge 2, \ l(\lambda) - l(\mu) = 1 & \& \ \chi_1(\mu) \le n - 2 \\ \bullet \ l(\mu) \ge 2, \ l(\lambda) - l(\mu) = 2 & \& \ n \ge 2 \\ \bullet \ l(\mu) \ge 2, \ l(\lambda) - l(\mu) = 2, \ n = 1 & \& \ \chi_1(\mu) = 2 \\ \bullet \ l(\mu) \ge 2 & \& \ l(\lambda) - l(\mu) \ge 3 \end{array}$$

$$m=n=$$
 1, $\chi_1(\lambda)=\chi_1(\mu)=$ 1 $\implies \lambda \& \mu$ are staircase partitions

Let λ and μ be staircase partitions with $l(\lambda) \ge l(\mu)$. Then, $\lambda + \mu$ is a triangular partition unless $l(\mu) \ge 2$ & $l(\lambda) - l(\mu) \ge 3$.

- Can we characterize all balanced words w for which 1w is a balanced word?
- Can we characterize all pairs of quasi-balanced words u and v for which u ⊕ v is a quasi-balanced word?
- Can we characterize all pairs of balanced words u and v for which $u \bigoplus v$ is a balanced word?

54

56

- Can we characterize all pairs of balanced words u and v with $u_1 = v_1 = 1$ such that $u \boxplus v$ is a balanced word?
- Can we characterize all pairs of a quasi-balanced word u and a balanced word v with u₁ = 0 and v₁ = 1 for which u ⊕ v is a balanced word?
- Can we characterize all pairs of a quasi-balanced word u and a balanced word v with v₁ = 1 for which u ⊞ v is a quasi-balanced word?
- Can we characterize all balanced words w with $|w| \ge 2$ for which ow is a balanced word?

Dr. François Bergeron

Laboratoire d'Algèbre, de Combinatoire et d'Informatique Mathématique (LACIM)

Université du Québec à Montréal, Canada

REFERENCES

FRANÇOIS BERGERON AND MIKHAIL MAZIN. COMBINATORICS OF TRIANGULAR PARTITIONS. Enumerative Combinatorics and Applications, 3:1, 2022.

ALEJANDRO BASILIO GALVÁN PÉREZ-ILZARBE.
PROPERTIES OF TRIANGULAR PARTITIONS AND THEIR GENERALIZATIONS.
Bachelor Thesis, Universitat Politècnica de Catalunya, 2023.

Merci et bonne soirée