Python for Data Sci

|ISER-Kolkata ML4HEP Pre-school Lecture Series
May 12, 2025 - Lecture 1

Subir Sarkar, SINP
subir.sarkar@cern.ch

Python’s place in the computing world

Major Programming Lanc

in the Scientific

Byte Compiled

Compiled (partly compiled + Interpreted
interpreted)
Fortran Tcl
dive libraries)
. p| (access Nd —p
xtension A
C - . C/C++
“ gmbedding inside
C++

dynamic type

portable

relatively slow
scripting/embedding
interface to C/C++/]Java

e static type
o fast
e source level portability

Major Programming Lanc

in the Scientific

Byte Compiled

Compiled (partly compiled + nterpreted
interpreted)
Fortran o
e lipraries)
Extension AP| (access native lib . el
X
C
- Embedding inside C/CHF
C++

dynamic type

portable

relatively slow
scripting/embedding
interface to C/C++/]Java

e static type
o fast
e source level portability

Major Programming Lanc

in the Scientific

Byte Compiled

Compiled (partly compiled + Interpreted
interpreted)
Fortran Tcl
) : rar'\eS)
Extension AP (access native 11D _» Perl
X
C — - ide C/CH+ Python byte compiled
EmbEd ing
C++

dynamic type

portable

relatively slow
scripting/embedding
interface to C/C++/]Java

e static type
o fast
e source level portability

5

Major Programming Lanc

in the ScientificV

. Byte Compiled
Compiled (partly compiled + Interpreted
interpreted)

Fortran Tcl
_, Perl

Pyth ON byte compiled

e dynamic type

e static type e static type e portable

o fast e secure e relatively slow

e source level portability e portable e scripting/embedding !
e interface to C/C++/]Java

Major Programming Lanc

in the ScientificV

. Byte Compiled
Compiled (partly compiled + Interpreted
interpreted)

Fortran Tcl

. 3 ies
sion AP! (access native librarte) _, Perl
Exten
C

Embedding inside C/CHF
/aVe
C++ /\/e%e /
Nt
/7:9(“@

ava BeanShell
J — Groovy

Pyth ON byte compiled

Jython
e dynamic type
e static type e static type e portable
o fast e secure e relatively slow
e source level portability e portable e scripting/embedding
e interface to C/C++/]Java

Major Programming Lanc

in the ScientificV

Byte Compiled

Compiled (partly compiled + Interpreted
interpreted)
Fortran Tcl
. : ies
ion AP (access native libraries) _, Perl
Extenst
C e C/CH Python byte compiled
noinsiae W~ 0
EmbEdd\ng\
/cS’ya/V R
C++ Wi, ~N = m=mm====-
@/np@rf Java Beanshell - HE
e —— ooy JavaScript
Jython

e static type
o fast
e source level portability

e static type
® secure
e portable

dynamic type

portable

relatively slow
scripting/embedding
interface to C/C++/]Java

Major Programming Lanc

in the ScientificV

. Byte Compiled
Compiled (partly compiled + Interpreted
interpreted)

Fortran Tcl
_, Perl

. . le PHP
Julia (IT compiled) ¢ JaVa w—0, Bf;gggf" JavaScript

GO, Rust Jython
e dynamic type
e static type e static type e portable
o fast e secure e relatively slow
e source level portability e portable e scripting/embedding
e interface to C/C++/]Java

Python at a glance

Python Design High

Supports all major programming paradlgms / = . s
o procedural, object oriented and functional R (Cvremcyvveed)
4 Type Checking

o imperative and declarative

Databases

+
GUI
Programming

Automatic
Simple syntax, white space important, pass Collection m
by-reference faaniies
. High Level
Dynamically typed, loosely bound @ .
Scripting & driver language Fre
. . Scalable Intergrated Cross platform
o binds different components together \\ open Source mﬂuase /

o seamlessly supports multi-language environment

https://starship-knowledge.com/awesome-python-data-science-libraries

One can programmatically build and execute Python code as string on-the-fly, inside a
running Python program

Object Orientation from ground up (no data hiding, though!)

A very high level language (VHLL)
o built-in support for exception
o introspection is an integral part of the language

High level APl to seamlessly access C/C++/Java/Fortran libraries
o opens up infinite possibilities
o Python objects can be directly created from the native library (.so)
11

Integrated Developme

e Interactive environment

O
O
O
O
O

python shel
ipython (https://ipython.org)

jupyter notebook - https://jupyter.org/

IDLE, spyder, PyCharm

SWAN - https.//swan.web.cern.ch/ - a platform
to perform interactive data analysis on the
cloud

12

https://jupyter.org/
https://swan.web.cern.ch/

Python applicatio

Scientific computing, data science

o NumPy, pandas, PyTables, / @
PyROOT, Machine Learning
frameworks (classical, quantum)

Natural
Language

Matplotlib
Data
Visualization

System administration

Web frameworks
o CGl, CherryPy, Flask, Django, \\
TurboGears and a hell lot more

Development

Scientific

Interface to databases, XML and
. PYTHRCH O learn T{,,.f |
json parsers

pandas 14 (" d «. matplotlib

GUI development
o PyGtk, PyQT/PySide, wxPython

Game development

https://starship-knowledge.com/awesome-python-data-science-libraries 13

Python as an interpret

e A Python interpreter source code

o parses a Python
program/source file (.py)
m compilesinto
byte-code (.pyc)

o executes byte-code / / l
edit
b

parse external

libraries

m interprets on a virtual yte /S%ng of bytes
machine (VM) T compile
o no need for compilation /test/
and linking phases
m NO binary executable \

// run %terpret on the VM

https://www.datacamp.com/community/tutorials/data-science-python-ide 14

Portability & Per

e Python source code is inherently portable across
platforms/architectures

o the underlying virtual machine (VM) instance takes care
of architecture dependence

o in most cases you pay a performance penalty
m Vis-a-vis Fortran/C/C++/Go/Rust(/Julia)
m benefits usually outweigh lack of performance
m there are alternative implementations of Python to

address performance issues with certain limitations
e (Cython - uses additional C/C++ extension libraries

e PyPy (w/JIT) - works with pure Python, not with C extension

e numba (w/ JIT) - sprinkle decorators to accelerate code
execution

15

Interactive Python

Interactive Python

S python
>>> credits

>>> copyright
>>> help(l) # help on integer
>>> help ()

help> keywords
help> quit
>>>

There are more than one ways to exit an interactive session

>>> CTRL-D

>>> quit ()

>>> raise SystemExit
>>> import sys

>>> sys.exit ()

17

Python as a calc

$ python3

Python 3.8.10 (default, Mar 15 2022, 12:22:08)

[GCC 9.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> 2 + 2

4

>>> g = 2

>>> b = 2

>>> c = a * Db

>>> print (c)

4
>>> bin (16)

'0b10000"

>>> pow (2, 3) Python does not load the full
8 math library in memory

>>> 1og (10)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'log' is not defined

e Two major releases in use: python2 and python3
e python3 is the default on modern OSes, breaks backward compatibility
e python3is used in this course 18

Python as a calcu

>>> import math # load a module

>>> dir (math) # see what it offers

[... 'log', 'loglO', 'loglp', 'modf', 'p1i',
'pow', 'radians', 'sin', 'sinh', 'sqgrt',
'"tan', 'tanh', 'trunc']

>>> math.pi

3.141592653589793

>>> from math import sqgrt,pow
>>> pow (2, 3)
8.0

>>> sqrt (10)
3.1622776601683795

>>> # result of the last expression
3.1622776601683795

19

Code Execution: script, eval, exec

20

Python script (on Li

(EZZusr/bin/env python3

first.py Find the default
for 1 in range(10): Python interpreter
print (1, end=" ")

[1]1$ python first.py
01 2 3 45 6 789

$./first.py Turn on execution blt}

]
1 23 456789 21

eval

S python3

>>> result = eval('1.0 + 1.0")

>>> print (result, type(result))
2.0 <class 'float'>

>>> print(eval ("len('hello world!')"))

12

>>> print(eval (" import ('os').getcwd()"))
/home/sarkar/python/examples

22

exec

e oOne can construct Python code as string and execute
on-the-fly from within a running Python program

>>> code = 'print("hello world!")'

>>> exec (code)
hello world!

23

Data type, variable scope, namespace

24

Data type Example

Numbers 3.1415, 1234, 9999999999, 3+4;
String “Hello”, “guido v"
List [1, [2,'three'], 4]
Dictionar {'compiled": 'Fortran,C,C++',
y 'interpreted'; 'Perl, Python, Ruby'}
Tuple 1,'world!',3,4 or (1,'world!", 2, 3)

File f = open('myfile.dat’, 'r').readlines()

Python - dynamically typed;

e Name (refer) a variable, no need to declare the type

o variable type is context sensitive

o from Python 3.6 static type is allowed, basically as a hint
e Python keeps track of type of an object referenced by a variable name during

it's lifetime i.e Python is NOT weakly typed

>>> a = False
>>> print (type(a))
<class 'bool'>

>>> a = 5
>>> print (type(a))
<class 'int'>

>>> a = "Hello World!"
>>> print (type(a))
<class 'str'>

>>> a = [1,2,3,4]
>>> print (type(a))
<class 'list'>

>>> a =1,2,3,4
>>> print (type(a))
<class 'tuple'>

>>> a = None
>>> print (type(a))

<class 'NoneType'> e

Variable Scope & Lif

Scope
o part of a program where a variable is accessible

Lifetime
o duration for which a variable is accessible

In general, variables defined
o inthe of a program have global scope

m visible throughout the file, and also inside any file
which imports that file
m global scope is usually a bad idea
O inside a have local scope

O in aclass have local scope, but can be accessed
from outside through the object (no data hiding)

Variable Scope & Li

global

a = 0

1f a ==
b =1

what do we expect?
print (b)

local

def test scope(c):
d = 3
print (c, d)

call the function
d = 5
test scope (/)

what do we expect?
print (c, d)

28

Type Systenr

e static vs dynamic

o type checking at compile time vs leaving the responsibility to
runtime

e strong vs weak
o how runtime treats types
o 1+"1" gives error for strongly typed language (e.g Python)

e explicit vs implicit
o how type conversion takes place

>>> int ("Hello")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int () with base 10: 'Hello'
>>> int('5"'")
5
>>> float('5.2"'")
5.2

29

e The empty string is mapped to False, every other string is mapped to True

>>> g = !

>>> 1f s:
print('hello')

>>> s = 'rob'

>>> 1f s:
print('hello')

hello

e Forintegers, 0 is mapped to False and every other value to True
e For floating point numbers, 0.0 is mapped to False and every other value to True
>>> a =1

>>> if a:
print ('hello')

hello

30

