
IISER-Kolkata ML4HEP Pre-school Lecture Series
 May 12, 2025 - Lecture 1

Subir Sarkar, SINP
subir.sarkar@cern.ch

Python for Data Science

1

Python's place in the computing world

2

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled
Byte Compiled
(partly compiled +

interpreted)

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Extension API (access native libraries)

Embedding inside C/C++

Tcl

3

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl

Byte Compiled
(partly compiled +

interpreted)

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Extension API (access native libraries)

Embedding inside C/C++

Tcl

4

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl

Byte Compiled
(partly compiled +

interpreted)

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Extension API (access native libraries)

Embedding inside C/C++

Tcl

5

Python byte compiled

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl
Python byte compiled

Byte Compiled
(partly compiled +

interpreted)

Java

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Java Native Interface

Extension API (access native libraries)

Embedding inside C/C++

● static type
● secure
● portable

Tcl

6

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl
Python byte compiled

Byte Compiled
(partly compiled +

interpreted)

Java

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Java Native Interface

Extension API (access native libraries)

Embedding inside C/C++

● static type
● secure
● portable

BeanShell
Groovy
Jython

Tcl

7

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl

R

Byte Compiled
(partly compiled +

interpreted)

Java

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Java Native Interface

Extension API (access native libraries)

Embedding inside C/C++

● static type
● secure
● portable

 PHP
JavaScript

BeanShell
Groovy
Jython

Tcl

8

Python byte compiled

Major Programming Languages
in the Scientific World

Interpreted

Fortran

C

C++

Compiled

Perl

R

Byte Compiled
(partly compiled +

interpreted)

Java

● static type
● fast
● source level portability

● dynamic type
● portable
● relatively slow
● scripting/embedding
● interface to C/C++/Java

Extension API (access native libraries)

Embedding inside C/C++

● static type
● secure
● portable

 PHP
JavaScript

BeanShell
Groovy
Jython

Tcl

9

Julia (JIT compiled)

Java Native Interface
Go, Rust

Python byte compiled

Python at a glance

10

Python Design Highlights
● Supports all major programming paradigms

○ procedural, object oriented and functional
○ imperative and declarative

● Simple syntax, white space important, pass
by-reference

● Dynamically typed, loosely bound

● Scripting & driver language
○ binds different components together
○ seamlessly supports multi-language environment

11

● One can programmatically build and execute Python code as string on-the-fly, inside a
running Python program

● Object Orientation from ground up (no data hiding, though!)

● A very high level language (VHLL)
○ built-in support for exception
○ introspection is an integral part of the language

● High level API to seamlessly access C/C++/Java/Fortran libraries
○ opens up infinite possibilities
○ Python objects can be directly created from the native library (.so)

https://starship-knowledge.com/awesome-python-data-science-libraries

Integrated Development Environment

● Interactive environment
○ python shell
○ ipython (https://ipython.org)
○ jupyter notebook - https://jupyter.org/
○ IDLE, spyder, PyCharm
○ SWAN - https://swan.web.cern.ch/ - a platform

to perform interactive data analysis on the
cloud

12

https://jupyter.org/
https://swan.web.cern.ch/

Python application domain
● Scientific computing, data science

○ NumPy, pandas, PyTables,
PyROOT, Machine Learning
frameworks (classical, quantum)

● System administration
● Web frameworks

○ CGI, CherryPy, Flask, Django,
TurboGears and a hell lot more

● Interface to databases, XML and
json parsers

● GUI development
○ PyGtk, PyQT/PySide, wxPython

● Game development

13https://starship-knowledge.com/awesome-python-data-science-libraries

Python as an interpreted language
● A Python interpreter

○ parses a Python
program/source file (.py)
■ compiles into

byte-code (.pyc)
○ executes byte-code

■ interprets on a virtual
machine (VM)

○ no need for compilation
and linking phases
■ no binary executable

14

run

source code

parse

byte
compile

external
libraries

test

edit

https://www.datacamp.com/community/tutorials/data-science-python-ide

string of bytes

interpret on the VM

Portability & Performance
● Python source code is inherently portable across

platforms/architectures
○ the underlying virtual machine (VM) instance takes care

of architecture dependence
○ in most cases you pay a performance penalty

■ vis-a-vis Fortran/C/C++/Go/Rust(/Julia)
■ benefits usually outweigh lack of performance
■ there are alternative implementations of Python to

address performance issues with certain limitations
● Cython - uses additional C/C++ extension libraries
● PyPy (w/ JIT) - works with pure Python, not with C extension
● numba (w/ JIT) - sprinkle decorators to accelerate code

execution

15

Interactive Python

16

Interactive Python

● >>> CTRL-D
● >>> quit()
● >>> raise SystemExit
● >>> import sys
● >>> sys.exit()

There are more than one ways to exit an interactive session

$ python
>>> credits
>>> copyright
>>> help(1) # help on integer
>>> help()
help> keywords
help> quit
>>>

Get information,
extensive help

17

Python as a calculator
$ python3
Python 3.8.10 (default, Mar 15 2022, 12:22:08)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 2 + 2
4
>>> a = 2
>>> b = 2
>>> c = a * b
>>> print(c)
4
>>> bin(16)
'0b10000'
>>> pow(2,3)
8
>>> log(10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'log' is not defined

18

Python does not load the full
math library in memory

● Two major releases in use: python2 and python3
● python3 is the default on modern OSes, breaks backward compatibility
● python3 is used in this course

Python as a calculator
>>> import math # load a module
>>> dir(math) # see what it offers
[... 'log', 'log10', 'log1p', 'modf', 'pi',
'pow', 'radians', 'sin', 'sinh', 'sqrt',
'tan', 'tanh', 'trunc']

>>> math.pi
3.141592653589793

>>> from math import sqrt,pow
>>> pow(2,3)
8.0

>>> sqrt(10)
3.1622776601683795

>>> _ # result of the last expression
3.1622776601683795

19

Code Execution: script, eval, exec

20

Python script (on Linux)

Turn on execution bit

Find the default
Python interpreter

#!/usr/bin/env python3

first.py
for i in range(10):
 print(i, end=" ")

[1]$ python first.py
0 1 2 3 4 5 6 7 8 9

[2]$ chmod a+x first.py

[3]$./first.py
0 1 2 3 4 5 6 7 8 9 21

eval
$ python3

>>> result = eval('1.0 + 1.0')

>>> print(result, type(result))
2.0 <class 'float'>

>>> print(eval("len('hello world!')"))
12

>>> print(eval("__import__('os').getcwd()"))
/home/sarkar/python/examples

22

exec

>>> code = 'print("hello world!")'
>>> exec(code)
hello world!

● one can construct Python code as string and execute
on-the-fly from within a running Python program

23

Data type, variable scope, namespace

24

Built-in Data Types

Data type Example

Numbers 3.1415, 1234, 9999999999, 3+4j

String “Hello”, “guido v”

List [1, [2,'three'], 4]

Dictionary {'compiled': 'Fortran,C,C++',
'interpreted': 'Perl, Python, Ruby'}

Tuple 1,'world!',3,4 or (1,'world!', 2, 3)

File f = open('myfile.dat', 'r').readlines()

25

Python - dynamically typed, loosely bound
● Name (refer) a variable, no need to declare the type

○ variable type is context sensitive
○ from Python 3.6 static type is allowed, basically as a hint

● Python keeps track of type of an object referenced by a variable name during
it's lifetime i.e Python is NOT weakly typed

>>> a = False
>>> print(type(a))
<class 'bool'>

>>> a = [1,2,3,4]
>>> print(type(a))
<class 'list'>

>>> a = 5
>>> print(type(a))
<class 'int'>

>>> a = "Hello World!"
>>> print(type(a))
<class 'str'>

>>> a = 1,2,3,4
>>> print(type(a))
<class 'tuple'>

>>> a = None
>>> print(type(a))
<class 'NoneType'>

26

Variable Scope & Lifetime
● Scope

○ part of a program where a variable is accessible
● Lifetime

○ duration for which a variable is accessible
● In general, variables defined

○ in the main body of a program have global scope
■ visible throughout the file, and also inside any file

which imports that file
■ global scope is usually a bad idea

○ inside a function have local scope
○ in a class have local scope, but can be accessed

from outside through the object (no data hiding) 27

Variable Scope & Lifetime
global
a = 0

if a == 0:
 b = 1

what do we expect?
print(b)

local
def test_scope(c):
 d = 3
 print(c, d)

call the function
d = 5
test_scope(7)

what do we expect?
print(c, d)

28

Type System
● static vs dynamic

○ type checking at compile time vs leaving the responsibility to
runtime

● strong vs weak
○ how runtime treats types
○ 1 + “1” gives error for strongly typed language (e.g Python)

● explicit vs implicit
○ how type conversion takes place

>>> int("Hello")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'Hello'
>>> int('5')
5
>>> float('5.2')
5.2 29

True or False

● For integers, 0 is mapped to False and every other value to True
● For floating point numbers, 0.0 is mapped to False and every other value to True
>>> a = 1
>>> if a:
... print('hello')
...
hello

● The empty string is mapped to False, every other string is mapped to True
>>> s = ''
>>> if s:
... print('hello')
...
>>> s = 'rob'
>>> if s:
... print('hello')
...
hello

30

