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Measurements

Purpose of doing experiments:

▶ Parameter Determination
e.g. Measuring the value of gravitational constant, G

▶ Hypothesis Testing
e.g. Checking whether the gravitational constant varies

over time.

In reallity there may be some degree of overlap
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Measurements and Uncertainties

Why estimate Uncertainties/Errors?

▶ It gives a degree of accuracy of the measurement – the
estimation of how far the measured value is from the true
value of the parameter

▶ It can also help to test a theory or compare it to the results of
other experiments

For example: suppose the last measured value of
G = 6.6743× 10−11 m3 · kg−1 · s−2, and our measured value is
6.675× 10−11 m3 · kg−1 · s−2.

1. If ϵ = ± 0.002× 10−11 =⇒ Consistent with old one

2. If ϵ = ± 0.0002× 10−11 =⇒ Inconsistent with old one,
possibility of variation over time

3. If ϵ = ± 0.2× 10−11 =⇒ The accuracy is too low, need to
perform better experiment.
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Uncertainties

In particle physics there are various sources of uncertainties
▶ Random Errors

▶ Inherent quantum mechanical fluctuations
▶ Random measurement errors even without quantum effects

▶ Systematic Errors
▶ Errors in the measuring device, e.g. mistakes in calibrations
▶ Errors in theoretical predictions, e.g. cross sections of

simulated events
▶ ...

The factors behind the uncertainties in principle could be known,
but practically not.

Uncertainty can be quantified using the concept of Probability
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Probability

Can be defined using set theory
Consider a set S (sample space), with subsets A, B

Kolmogorov Axioms:

For all A ⊂ S, P (A) ≥ 0
P (S) = 1

If A ∩B = ∅, P (A ∪B) = P (A) + P (B) A	
B	

S	

Α∩Β

From these axioms further properties can be derived, e.g.
0 ≤ P (A) ≤ 1
P (A) = 1 − P (A), A is complement of A
P (A ∪A) = 1
P (∅) = 0
if A ⊂ B, P (A) ≤ P (B)
P (A ∪B) = P (A) + P (B) − P (A ∩B)
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Conditional probability
Define conditional probability of A given B (provided P (B) ̸= 0)

P (A|B) =
P (A ∩B)

P (B)

A and B are said to be
independent, if,
P (A ∩B) = P (A)P (B)

If A, B are independent,
P (A|B) = P (A).

N.B. Don’t confuse independent
subsets as disjoint subsets (i.e.
P (A ∩B) = ∅)
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Conditional probability – contd.
From the definition of conditional probability,

P (A|B)P (B) = P (B|A)P (A), since P (A∩B) = P (B ∩A)

Hence,

P (A|B) =
P (B|A)P (A)

P (B)
Bayes’ theorem
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Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)

How do we interpret this equation?

▶ Before knowing B is true, our degree of belief in the event A
= prior probability P (A)

▶ After knowing B is true, our degree of belief in the event A
changes, and becomes equal to the posterior probability
P (A|B)

That is the degree of belief in event A is updated based on the
state of our knowledge that B is true.

9



Law of total probability

Consider a sample space S divided into
disjoint subsets Ai,

i.e. S = ∪i Ai, and Ai ∩Aj = ∅ for
i ̸= j.

Consider a subset B ⊂ S, it can be expressed as

B = B ∩ S = B ∩ (∪iAi) = ∪i (B ∩Ai)

=⇒ P (B) = P (∪i(B ∩Ai)) =
∑

i P (B ∩Ai)

=⇒ P (B) =
∑

i P (B|Ai)P (Ai) law of total probability

Thus, Bayes’ theorem becomes

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)
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Example of using Bayes’ theorem

Consider a disease D carried by 0.1% of people
i.e., the prior probabilities are

P (D) = 0.001,
P (no D) = 0.999

Consider a test that identifies the disease, the result is +ve or -ve

Suppose the probabilities to (in)correctly identify a person with the
disease are,

P (+|D) = 0.98,
P (−|D) = 0.02

Similarly, suppose the probabilities to (in)correctly identify a
healthy person

P (+|no D) = 0.01,
P (−|no D) = 0.99

What is the probability to have the disease if someone is tested
+ve?
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Example contd..

We can calculate it using the Bayes’ theorem

i.e., the probability to have the disease given a +ve test result is

P (D|+) =
P (+|D)P (D)

P (+|D)P (D) + P (+|no D)P (no D)

=
0.98× 0.001

0.98× 0.001 + 0.01× 0.999
= 0.089 (posterior probability)

What does it mean?

Patient’s view: Probabilty for him to have the disease is 8.9%.

Doctor’s view: 8.9% of people like this have the disease.
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Interpretation of probability

Two definitions of probabilities: frequentist probability and
Bayesian probability

▶ frequentist: Relative frequency
Suppose X, Y , ... are outcomes of a repeatable experiment

P (X) = limN→∞
number of times the outcome is X

N

e.g., Probability of monsoon reaching India in 1st weak of
June.

Probability for producing a certain particle in pp collisions
at a particular centre of mass energy.

Note: P (X) ≥ 0, P (S) = 1 , i.e. consistent with
axioms of probability
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Interpretation of probability - II

▶ Bayesian: Subjective probability
Degree of belief that something will happen.
In this case X, Y , ... are hypotheses (statements that are
true or false)

P (X) = degree of belief that X is true

e.g.
It will rain tomorrow.
The mass of SUSY candidate particle is between 2 and 3

TeV

The sample space S (also called as “hypothesis space”) consists of
elementary hypotheses that are mutually exclusive. One of the
hypotheses must necessarily be true.

So, P (X) ≥ 0, and P (S) = 1
Consistent with Kolmogorov axioms
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Bayesian Statistics

Subjective probability is the basis of Bayesian statistics e.g.,

Probability for a hypothesis to be true given observations (data)
from an experiment.

P (H|data) =
P (data|H)P (H)∑
P (data|Hi)P (Hi)

P (H) is the prior probability, i.e. knowledge or degree-of-belief in
hypothesis H before seeing the data.
P (data|H) is the probability of observing this data assuming the
hypothesis (likelihood).
P (H|data) is the posterior probability, i.e., after seeing the
result/data of the experiment.

There is no general rule for assigning the priors (subjective!).
However, given a prior it says how the probabilities change in the
light of experimental data
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Probability Distributions

A variable that takes on a specific value for each element of the
sample space is called a random variable.
The outcome of a random event is not predictable, only the
probabilities of the possible outcomes are known.

Random variable can be discrete or continuous. Suppose the

outcome of an experiment is a continuous variable x,
probability for x to lie between x and x+ dx is

P (x in [x, x+ dx]) = f(x)dx

f(x) is probability density function (PDF)

Normalization condition∫ +∞

−∞
f(x)dx = 1
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Probability Distributions – contd.
For discrete variables xi, i = 1, 2, ...,

P (xi) = fi

Normalization condition ∑
i

fi = 1

in continous PDF formalism

f(x) =
∑
i

fiδ(x− xi)

The normalization then∫ +∞

−∞
f(x)dx =

∑
i

fi

∫ +∞

−∞
δ(x− xi)dx =

∑
i

fi = 1
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Probability Distributions – Example
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Consider
tossing of two dice:

What
are the outcomes and their
corresponding probabilities?

Possible outcomes are
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

The corresponding
probabilities are:
1/36, 2/36, 3/36, 4/36, 5/36,
6/36, 5/36, 4/36, 3/36, 2/36, 1/36
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Statistical Indicators

Consider random variable x with pdf f(x).
Expectation value (also called population mean) is defined as
< x > =

∫
xf(x)dx = µ

Variance:
V [x] = σ2(x) =

∫
(x − < x >)2f(x)dx =< x2 > − < x >2

=< x2 > − µ2

σ is called the standard deviation.
σ ∼ width of pdf (same units as x).

For discrete variables
The mean or arithmetic mean is defined as

x̄ = 1
N

∑N
i=1 xi

and variance V ar[x] = 1
N−1

∑N
i=1(xi − x̄)2
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Statistical Indicators – contd.

The kth moment of x is defined as

m′
k(x) =

∫
xkf(x)dx

and the kth central moment of x is defined as

mk(x) = < (x− < x >)k > =

∫
(x− < x >)kf(x)dx

The mode of a PDF f is the value x̂ corresponding to the
maximum of f(x)

f(x̂) = max f(x) or x̂ = argmax f(x)
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Cumulative distribution function
Probability to obtain an outcome less than or equal to x:

F (x) =

∫ x

−∞
f(x′)dx′ (cdf)

Or define pdf as, f(x) =
∂F (x)

∂x
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A relative quantity is quantile of order α or α-point:

xα = F−1(α) x1/2 is median
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Characteristic function
The characteristic function (CF) of a r.v. x, with PDF f(x) and
CDF F (x), is defined as

φx(t) =< eitx >=

∫
R
eitxf(x)dx =

∫
R
eitxdF (x)

i.e. It is the Fourier transform of PDF with sign reversal.
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Characteristic function – contd.
▶ CFs can be used to find moments of a r.v., i.e. for kth

moment,

< xk >= i−k

[
dk

dtk
φx(t)

]
t=0

= i−kφ(k)
x (0)

For example, for Gaussian PDF, φx(t) = exp(iµt− 1
2σ

2t2),
Thus, the mean

< x >= i−1

[
d

dt
φx(t)

]
t=0

= i−1
[(
iµ− σ2t

)
φx(t)

]
t=0

= µ

Similarly < x2 >= µ2 + σ2.
▶ If x1, .., xn are independent r.v. and w1, .., wn are some

constants, the the CF of linear combination is

φw1x1+···+wnxn(t) = φx1(w1t) · · · φxn(wnt)

e.g. for sum two variables,

φx1+x2(t) = φx1(t) · φx2(t)
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Common Discrete Probability Functions

These are some of the common discrete probability distribution
functions:

Bernoulli f(1) = p, f(0) = 1− p

Binomial f(n;N, p) NCnp
n(1− p)N−n

Mutinomial f(n1, .., nm;N, p1, .., pm) N !
n1!...nm!p

n1
1 ...pnm

m

Poisson f(n; ν) νn

n! e
−ν
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Bernoulli Distribution

Consider a bag containing a number of balls each having one of
the two possible colours.
Assume number of RED balls = R
and number of BLUE balls = B

Probability
to randomly pick a RED ball, p = R

R+B

A variable x = the outcomes
of a trial, is called Bernoulli variable,
i.e. x = 0(failure) or 1(success)

The probability distribution of x is simply

P (1) = p,

P (0) = 1− p
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Bernoulli Distribution – contd.

The average of Bernoulli variable

< x >= 0× P (0) + 1× P (1) = P (1) = p

Variance

V [x] =< x2 > − < x >2= 02×P (0)+12×P (1)−p2 = p−p2 = p(1−p)

The ratio
O =

p

1− p

is called odds
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Binomial Distribution

Consider N independent trials (or observations), each with two
possible outcomes: success or failure
Probability of success = p

The total probability to have “n” suceesses in N trials is

f(n;N, p) =
N !

n!(N − n)!
pn(1− p)N−n

where n = 0, 1, .., N .
This is known as the binomial distribution

And
N !

n!(N−n)! is called binomial coefficient

Exercise: Show that < n > = Np and V [n] = Np(1− p)
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Binomial Distribution – contd.
Binomial distributions for different values of N and p
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Poisson Distribution

When N is very large and p is very small, such that ν = Np (rate
parameter) is finite, the binomial distribution becomes Poisson
distribution.

Writing the binomial distribution in terms of ν

f(n;N, ν) =
N !

n!(N − n)!

( ν

N

)n (
1− ν

N

)N−n

=

(
νn

n!

)
N(N − 1)...(N − n+ 1)

Nn

(
1− ν

N

)N (
1− ν

N

)−n
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Poisson Distribution – contd.

In the limit N → ∞
▶ limN→∞

N(N−1)...(N−n+1)
Nn = 1

▶ limN→∞
(
1− ν

N

)N
= limN→∞ exp

(
Nln

(
1− ν

N

))
= e−ν

▶ limN→∞
(
1− ν

N

)−n
= 1, since ν/N → 0

Thus, the distribution becomes

f(n; ν) =
νn

n!
e−ν

Exercise Show that < n >= ν and V [n] = ν
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Poisson Distribution – contd.

Poisson distribution for different mean value

0 2 4 6 8 10 12 14 16 18 20
x

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

 = 10ν

 = 7ν

 = 4ν

 = 2ν

31



Common Probability Density Functions for continous
variables

Uniform f(x; a, b) 1/(b− a) x ∈ [a, b]

Exponential f(x; a) 1
ae

x/a x ∈ [0,∞)

Gaussian f(x;µ, σ) 1√
2πσ2

exp
(
−(x−µ)2

2σ2

)
x ∈ (−∞,∞)

Log-normal f(x;µ, σ) 1√
2πσ2

1
xexp

(
−(logx−µ)2

2σ2

)
x ∈ [0,∞)

Chi-square f(x;n) 1
2n/2Γ(n/2)

xn/2−1e−x/2 x ∈ [0,∞)

Breit-Wigner f(x; Γ,M) 1
π

Γ/2
Γ2/4+(x−M)2

x ∈ (−∞,∞)

Gamma f(x; a, b) 1
Γ(a)bax

a−1e−x/b x ∈ [0,∞)
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Uniform Distribution

If the variable is uniformly distributed in the range [a, b), the PDF
is constant in the range.

p(x) =

{
1

b−a if a ≤ x < b

0 otherwise
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∫ b
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and variance

V [x] =< (x− < x >)2 >

=
1

12
(b− a)2
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Exponential Distribution
The exponential PDF for continous variable x(0 ≤ x < ∞)

f(x; τ) =
1

τ
e−x/τ
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The mean

< x >=
1

τ

∫ ∞

0
xe−x/τdx = τ

and variance

V [x] =
1

τ

∫ ∞

0
(x− τ)2e−x/τdx

= τ2

Example: The distribution of decay time of an unstable particle,

where τ is the mean lifetime of the particle.
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Gaussian (Normal) Distribution

f(x;µ, σ) =
1√
2πσ2

exp

(−(x− µ)2

2σ2

)
The mean and variance are:
< x > = µ, V [x] = σ2
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Special case: µ = 0, σ = 1 (standard Gaussian)

ϕ(z) =
1√
2π

e−z2/2

And the cumulative distribution:

Φ(z) =

∫ z

−∞
ϕ(z′)dz′ =

1

2

[
erf

(
z√
2

)
+ 1

]
If x follows Gaussian with µ, σ, then z = (x− µ)/σ follows ϕ(y).
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Normal Distribution – contd.

The probability for a Gaussian distribution corresponding to the
symmetric interval around µ [µ− Zσ, µ+ Zσ] is given by

P (Zσ) =
1√
2π

∫ z

−z
e−z

′2/2dz′ = ϕ(Z)− ϕ(−Z) = erf

(
Z√
2

)
Most frequently used are: 1σ, 2σ, and 3σ (Z = 1, 2, 3), having
corresponding probabilities of 68.27%, 95.45% and 99.73%.
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Poisson vs Gaussian Distribution

For large ν, Poisson distribution can be approximated with a
Gaussian distribution having mean µ = ν and standard deviation
σ =

√
ν.
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Central Limit Theorem and Gaussian pdf

The theorem states that:
If xi are n independent random variables with variances σ2

i , then,
in the limit n → ∞ the sum

y =

n∑
i=1

xi

becomes a Gaussian random variable with

< x > =

n∑
i=1

µi V [y] =
n∑

i=1

σ2
i

irrespective of the form of the individual pdfs of the xi.
(The proof can be found in the references).
Measurement errors are often the sum of large number of small
contributions, so, these are normally treated as Gaussian random
variables.
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Log-normal distribution

If y is Gaussian with mean µ and variance σ2, then x = ey follows
the log-normal distribution.

f(x;µ, σ) =
1√
2πσ2

1

x
exp

(−(logx− µ)2

2σ2

)
Recall CLT: If y =

∑n
i=1 xi, then y is Gaussian.

Similarly, if y =
∏n

i=1 xi, then y follows log-normal.
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log-normal
=1σ=0, µ

Therefore,
random errors that change the
result by a multiplicative factor
are modeled as log-normal.

Exercise: show that
< x >= exp(µ+ 1

2σ
2)

V [x] =
exp(2µ+ σ2)[exp(σ2)− 1]
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Chi-square (χ2) distribution

The χ2 distribution for the continuous random variable z (z ≥ 0),

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2

n = number of degrees of freedom (dof).
< z > = n, v[z] = 2n
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Given n independent
Gaussian variables xi,
with mean µi and variances σ2

i ,

z =
∑n

i=1
(xi−µi)

2

σ2
i

follows

χ2 distribution with n dof.

Plays important role in
goodness-of-fit test, especially
in method of least squares.
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Gamma Distribution
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The Gamma distribution
for x (x ≥ 0),

f(x;α, β) =
βαxα−1e−βx

Γ(α)

where α, β > 0.
α is
called shape parameter
and β is scale parameter

Exercise: Show that mean = α/β and variance = αβ2
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Beta Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

1

2

3

4

5f(
x)

 = 5β = 1, α

 = 4β = 2, α
 = 3β = 3, α

 = 2β = 4, α

 = 1β = 5, α

The Beta distribution
for x (0 < x < 1),

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)

where α, β > 0,

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx

=
Γ(α)Γ(β)

Γ(α+ β)
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Breit–Wigner Distribution

Breit–Wigner distribution (aka Lorentz distribution or Cauchy
distribution) is given by

f(x; Γ,m) =
1

π

Γ

(x−m)2 + Γ2
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where,
m determines
the position of
the peak, and 2Γ = Full
width at half maximum.

Note: The mean and
variance are undefined,
since both

∫
xf(x)dx

and
∫
x2f(x)dx

are divergent.
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Joint pdf

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

6

7

8

9

10y

event B

event A

dx

dy

Suppose the result of
a measurement is characterized
by several quantities,
the joint pdf f(x, y) is given by

P (A ∩B) = f(x, y)dxdy

Normalization:∫ ∫
f(x, y)dxdy = 1

The pdf of x regardless
of y – marginal pdf:

fx(x) =

∫
f(x, y)dy
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Marginal pdf

It is the projection of joint pdf onto individual axes.

0 1 2 3 4 5 6 7 8 9 10

x

0

1

2

3

4

5

6

7

8

9

10y

0 1 2 3 4 5 6 7 8 9 10

x

0

50

100

150

200

250

(x
)

xf

0 1 2 3 4 5 6 7 8 9 10

y

0

20

40

60

80

100

120

140

160

180

200

(y
)

yf

45



Conditional pdf

Probability for y to be in [y, y + dy], given x is in [x, x+ dx] (i.e.
treating x to be fixed)
Definition of conditional probability:

P (B|A) =
P (A ∩B)

P (A)
=

f(x, y)dxdy

fx(x)dx

conditional pdf : h(y|x) =
f(x, y)

fx(x)
, g(x|y) =

f(x, y)

fy(y)

Thus, Bayes’ theorem becomes:

g(x|y) =
h(y|x)fx(x)

fy(y)

Since, A, B are independent if P (A ∩B) = P (A)P (B)
=⇒ x, y are independent if f(x, y) = fx(x)fy(y). i.e. the
corresponding joint pdf factorizes.
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Conditional pdfs

Conditional pdfs h(y|x1), h(y|x2) obtained from joint pdf f(x, y).

0 1 2 3 4 5 6 7 8 9 10

x

0

1

2

3

4

5

6

7

8

9

10y

1x 2x

0 1 2 3 4 5 6 7 8 9 10

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

h(
y|

x)

47



Covariance
The covariance of two random variables is defined as

cov[x, y] (or Vxy) =< (x− < x >)(y− < y >) >

=< xy > − < x >< y >=

∫ ∫
xyf(x, y)dxdy − µxµy

Correlation coefficient defined as

ρxy =
cov[x, y]

σxσy
− 1 ≤ ρxy ≤ 1

If x and y are independent, i.e. f(x, y) = fx(x)fy(y),

< xy > =

∫ ∫
xyf(x, y)dxdy

=

∫
xfx(x)dx

∫
yfy(y)dy = µxµy

=⇒ cov[x, y] = 0 (x and y are uncorrelated)

Note that, cov[x, y] = 0 does not always mean x and y are
independent.
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Multinomial Distribution

It is the generalization of binomial distribution to the case where
there m different possible outcomes.

Suppose the probability of each outcome i, for a particular trial, is
pi.

Then,
∑m

i=1 pi = 1

The joint probability to observe n1 outcomes of type 1, n2

outcomes of type 2 etc. in N total trials is given by

f(n1, ..., nm;N, p1, ..., pm) =
N !

n1!...nm!
pn1
1 ...pnm

m

Exercise Show that < ni >= Npi and variance
V [ni] = Npi(1− pi).
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Multinomial Distribution – contd.

If we have only three possible outcomes: i, j, and everything else

Then, the joint probability distribution for ni outcomes of type i,
nj outcomes of type j, and N − ni − nj of rest

f(ni, nj ;N, pi, pj) =
N !

ni!nj !(N − ni − nj)!
pni
i p

nj

j (1−pi−pj)
N−ni−nj

Exercise Show that the covariance Vij = cov[ni, nj ], for i ̸= j, is

Vij =< (ni− < ni >)(nj− < nj >) >= −Npipj

For i = j, Vii = σ2
i = Npi(1− pi)
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Multivariate Gaussian distribution

Gaussian distribution for n-dimesional vector x⃗ = (x1, ..., xn),

f(x⃗; µ⃗, V ) =
1

(2π)n/2|V |1/2 exp
[
−1

2
(x⃗− µ⃗)TV −1(x⃗− µ⃗)

]
x⃗, µ⃗ are column vectors. The expectation values and (co)variances,

< xi >= µi, V [xi] = σ2
i , cov[xi, xj ] = Vij

In 2d,

f(x1, x2;µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]]

ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient.
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Bivariate Gaussian distributions
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(a) ρ = 0.70, (b) ρ = − 0.70, (c) ρ = 0.95, (d) ρ = 0.20
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Functions of a random variables

Functions of random variables are themselves random variables.
Suppose f(x) is the pdf of x, and a(x) is a continuous function.
What is pdf of a?

If g(a) is pdf of a, then

g(a)da =
∫
dS f(x)dx

dS is the region x-space for
which a lies within [a, a+ da].

If a(x) can be inverted to
obtain x(a),

g(a)da = f(x)dx

=⇒ g(a) = f(x(a))|dxda |
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Functions of a random variables – contd.

If a(x) does not have a unique
inverse, include all dx intervals
in dS that correspond to da.

Exercise: What is the pdf g(a)
for the function a(x) = x2/4?
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Functions of more than one random variables

If a(x⃗) is a function of n random variables x⃗ = (x1, x2, ..., xn)

g(a′)da′ =

∫
...

∫
dS

f(x1, x2, ..., xn)dx1...dxn

dS is the region in x⃗-space between two (hyper)surfaces:
a(x⃗) = a′, a(x⃗) = a′ + da′.

Example:
Suppose x and y are independent
with pdfs g(x) and h(y). Consider
function z = xy. What is f(z)?

f(z)dz =
∫ ∫

dS g(x)h(y)dxdy

=
∫∞
−∞ g(x)dx

∫ (z+dz)/x
z/x h(y)dy

f(z) =
∫∞
−∞ g(x)h(z/x)dxx

or f(z) =
∫∞
−∞ g(z/y)h(y)dyy

(Mellin convolution)
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Functions of more than one random variables – contd.

Similarly, the pdf f(z) of the sum z = x+ y

f(z) =

∫ ∞

−∞
g(x)h(z − x)dx

=

∫ ∞

−∞
g(z − y)h(y)dy

f is called the (Fourier convolution).

Exercise: Show that if x and y are distributed uniformly between
0 and 1, then PDF of z will be triangular between 0 and 2.
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Functions of more than one random variables – contd.

For n random variables x = (x1, ..., xn), to determine the joint pdf
of n linearly independent functions ai(bfx), assuming ais can be
inverted to get xi(a1, ..., an)

g(a1, ..., an) = f(x1, ..., xn)|J |

where |J | is the absolute value of the Jacobian determinant,

J =

∣∣∣∣∣∣∣∣∣
∂x1
∂a1

∂x1
∂a2

. . . ∂x1
∂an

∂x2
∂a1

∂x2
∂a2

. . . ∂x2
∂an

...
...

∂xn
∂a1

. . . ∂xn
∂an

∣∣∣∣∣∣∣∣∣
To get the marginal pdf for one of the functions the joint pdf has
to be integrated over the remaining ai.
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Error Propagation

Suppose we have a set of random variables x⃗ = (x1, ..., xn),
distributed according to joint pdf f(x⃗).
Consider a function y(x⃗).
How to estimate the mean and variance of y(x⃗)?
Ans: Use joint pdf f(x⃗) to find the pdf g(y),
then using this pdf compute < y > and V [y].

However, in practical cases, f(x⃗) may not be fully known.
But, the mean values of the xi, µ⃗ = (µ1, ..., µn) and the
covariance matrix Vij = cov[xi, xj ] are known.
We can approximate the value of < y > and V [y].

Expand y(x⃗) to 1st order about µ⃗.

y(x⃗) ≈ y(µ⃗) +

n∑
i=1

[
∂y

∂xi

]
x⃗=µ⃗

(xi − µi)
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Error Propagation - 2
Since < xi − µi > = 0,

< y(x⃗) >≈ y(µ⃗)

Variance: σ2
y = < y2 > − < y >2

Where,

< y2(x⃗) >≈ y2(µ⃗) + 2y(µ⃗) ·
n∑

i=1

[
∂y

∂xi

]
x⃗=µ⃗

< xi − µi >

+ <

(
n∑

i=1

[
∂y

∂xi

]
x⃗=µ⃗

(xi − µi)

) n∑
j=1

[
∂y

∂xj

]
x⃗=µ⃗

(xj − µj)

 >

= y2(µ⃗) +

n∑
i,j=1

[
∂y

∂xi

∂y

∂xj

]
x⃗=µ⃗

Vij

=⇒ σ2
y ≈

n∑
i,j=1

[
∂y

∂xi

∂y

∂xj

]
x⃗=µ⃗

Vij
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Error Propagation - 3
If the xi are uncorrelated, i.e. Vij = δijσ

2
i , then,

σ2
y ≈

n∑
i=1

[
∂y

∂xi

]2
x⃗=µ⃗

Vij

Special cases:
If y = x1 + x2,

σ2
y = σ2

1 + σ2
2 + 2V12

Similarly, for y = x1x2,

σ2
y

y2
=

σ2
1

x21
+

σ2
2

x22
+ 2

V12

x1x2

Exercises: Derive the expression of the variance for the following
functions: (1) y = x1 − x2, (2) y = ax1

x2
, (3) y = axb, (4)

y = aebx (5) y = aln(bx), and (6) y = acos(bx), where a and
b are constants.
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Error Propagation - 4

Consider a set of m functions y⃗(x⃗) = (y1(x⃗), ..., ym(x⃗)). The
covariance matrix will be

Ukl = cov[yk, yl] ≈
n∑

i,j=1

[
∂yk
∂xi

∂yl
∂xj

]
x⃗=µ⃗

Vij

In matrix notation, U = AV AT , where

Aij =

[
∂yi
∂xj

]
x⃗=µ⃗

And, if the xi are uncorrelated,

Ukl ≈
n∑

i=1

[
∂yk
∂xi

∂yl
∂xi

]
x⃗=µ⃗

σ2
i
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Orthogonal transformation of random variables
Let x1, ..., xn are a set of correlated n r.v. having covariant matrix
vij = cov[xi, xj ] with non-zero offdiagonal elements.

Useful to define a set of n r.v. y1, ..., yn that are uncorrelated. i.e.
Uij = cov[yi, yj ] is diagonal.
It is possible with a linear transformation,

yi =

n∑
j=1

Aijxj

The cov. matrix

Uij = cov[yi, yj ] = cov

[
n∑

k=1

Aikxk

n∑
l=1

Ajlxl

]

=

n∑
k,l=1

AikAjlcov[xk, xl] =

n∑
k,l=1

AikVklA
T
lj

This is simply a special case of error propagation formula
U = AV AT .
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Orthogonal transformation of r.v. – contd.

Idea is to find a matrix A such that U = AV AT is diagonal.
−→ Diagonalization of real, symmetric matrix

Determine the eigenvalues (λi) and eigenvectors (r⃗i)
=⇒ λi are the diagonal elements of U and matrx A is constructed
from n eigenvectors r⃗i.
i.e. Aij = rij and AT

ij = rji .

You can show that Uij =
∑n

k,l=1AikVklA
T
lj = λjδij .

The variances of yi are λis.
Since the eigenvectors are orthonormal, AAT = I ⇒ AT = A−1.

=⇒ The transformation is orthogonal, i.e. corresponds to rotation
of the vector x⃗ into y⃗ such that |y⃗|2 = |x⃗|2.
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Orthogonal transformation of r.v. – contd.
In 2D, the cov. matrix for the variables (x1, x2) can be written as

V =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
Solving for eigenvalues,

λ± =
1

2

[
σ2
1 + σ2

2 ±
√
(σ2

1 + σ2
2)

2 − 4(1− ρ2)σ2
1σ

2
2

]
Orthonormal eigenvectors can be parametrized by an angle θ, i.e.,

r⃗+ =

(
cosθ
sinθ

)
r⃗− =

(
−sinθ
cosθ

)
Substituting back into eigenvalue equation

θ =
1

2
tan−1

(
2ρσ1σ2
σ2
1 − σ2

2

)
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Orthogonal transformation of r.v. – contd.
The desired transformation matrix is

A =

(
cosθ sinθ
−sinθ cosθ

)
Corresponds to a rotation of the vector (x1, x2) by an angle θ.
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