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Parameter estimation

Suppose x is a random variable described by pdf f(x)

Sample space: Set of all possible values of x.

sample: A set of n independent observations of x is a smaple of
size n.

Assuming all xi are independent, we can write the joint pdf
fsample(x1, ..., xn) as

fsample(x1, ..., xn) =
n∏

i=1

f(xi)
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Parameter estimation – contd.

▶ Suppose we have n-measurements of x, whose pdf f(x) is not
known. Problem: Infer properties of f(x) based on the
observations.

▶ Suppose we have a hypothesis that describes the pdf f(x, θ),
where θ is unknown parameter(s).
Example: Suppose we have a radio active source whose
lifetime is not known. We know that the decay rate is
distributed according to exponential distribution, with
parameter τ (lifetime).

▶ parameter fitting: Estimate the parameter value(s) given n
measurements x1, ..., xn (data).
Goal is to construct a function of xi to estimate the
parameter(s).
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Estimator(s)

Estimator: A function of observed measurements x1, ..., xn, which
is used to estimate some property of a pdf (e.g. mean, variance or
some other parameters)

An estimator for θ is usually written as θ̂. The numerical value of
the estimator evaluated with a particular sample is called an
estimate.

If θ̂ converges to θ in the limit of large n, the estimator is said to
be consistent.
Limit of large n is typically referred as ‘large sample’ or
‘asymptotic’ limit.
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Mean value of Estimator

A function of random variables is also a random variable
=⇒ θ̂ is a random variable, with some pdf g(θ̂; θ).
The prob. distribution of θ̂ is called a sampling distribution.

The expectation value of θ̂

< θ̂(x⃗) > =

∫
θ̂g(θ̂; θ)dθ̂

=

∫
...

∫
θ̂(x⃗)fsample(x1, ..., xn; θ)dx1...dxn

=

∫
...

∫
θ̂(x⃗)f(x1; θ)...f(xn; θ)dx1...dxn

This is the expected mean value of θ̂ from an infinite number of
similar experiments, each with a sample of size n.
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Quality of Estimators

Define bias,
b =< θ̂(x) > − θ

b depends on

▶ sample size,

▶ functional form of the estimator, and

▶ the true properties of the pdf f(x, θ).

If b = 0, irrespective of sample size n, θ̂ is unbiased.

If b → 0, in the limit n → ∞, θ̂ is asymptotically unbiased.

In most practical cases, the bias is small compared to the
statistical error (i.e. the standard deviation).
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Quality of Estimators – contd.

The mean squared error,

MSE = < (θ̂ − θ)2 > = < θ̂2 + θ2 − 2θ̂θ >

= < θ̂2 > + θ2 − 2 < θ̂ > θ

= < (θ̂− < θ̂ >)2 > +(< θ̂ − θ >)2

= V [θ̂] + b2

The MSE is the sum of the variance and the bias squared

An estimator is considered optimal if b = 0 and V [θ̂] is
minimum, though MSE could also be considered.
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Estimator for Mean

Consider a sample of a r.v. x, of size n: (x1, ..., xn).
The pdf f(x) is not known.
Aim: Construct a function t(x1, ..., xn) to be an estimator for
population mean < x >= µ.

The arithmetic mean or sample mean is

x =
1

n

n∑
i=1

xi

x can be considered to be an estimator for < x >.

Weak law of large numbers: If the variance of x exists, then x is
a consistent estimator for the population mean < x >.,
i.e. for n → ∞, x converges to µ.
Note that the law holds irrespective of the form of pdf f(x).
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Estimator for Mean – contd.

The expectation value of the sample mean,

< x̄ > =

〈
1

n

n∑
i=1

xi

〉
=

1

n

n∑
i=1

< xi > =
1

n

n∑
i=1

µ = µ

since

< xi > =

∫
...

∫
xif(x1)...f(xn)dx1...dxn = µ

for all i.
Hence, the sample mean x̄ is an unbiased estimator for the
population mean µ.
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Estimator for Variance

The sample variance s2, defined by

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

=
1

n− 1

n∑
i=1

(x2i + x̄2 − 2xix̄)

=
1

n− 1

(
n∑

i=1

x2i +

n∑
i=1

x̄2 − 2x̄

n∑
i=1

xi

)

=
1

n− 1

(
nx2 + nx̄2 − 2nx̄2

)
=

n

n− 1
(x2 − x̄2)

Exercise: Show that < s2 > = σ2.
So, s2 is an unbiased estimator for the population variance.
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Estimator for Variance – contd.

In case the population mean, µ, is known, define

S2 =
1

n

n∑
i=1

(xi − µ)2 = x2 − µ2

In this case, < S2 > = σ2, =⇒ S2 is an unbiased estimator of
the variance σ2.

Similarly,

V̂xy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
n

n− 1
(xy − x̄ȳ)

is an unbiased estimator for the covariance Vxy of two random
variables x and y of unknown mean.
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Estimator for correlation coefficient

The estimator r for the correlation coefficient, ρ,

r =
V̂xy

sxsy
=

∑n
i=1(xi − x̄)(yi − ȳ)(∑n

j=1(xj − x̄)2 ·∑n
k=1(yk − ȳ)2

)1/2
=

xy − x̄ȳ√
(x2 − x̄2)(y2 − ȳ2)

The expectation value of r depend on higher moments of the joint
pdf f(x, y). For 2d Gaussian pdf,

< r > = ρ − ρ(1− ρ2)

2n
+ O(n−2)

Thus, the estimator r is only asymptotically unbiased. Still it is
widely used because of its simplicity.
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Error on mean
Given an estimator θ̂, we can compute its variance

V [θ̂] =
〈
θ̂2
〉

−
(
< θ̂ >

)2
.

Note: V [θ̂] is a measure of the variation of θ̂ about its mean in a
large number of similar experiments each with sample size n
=⇒ statistical error of θ̂
e.g., the variance of sample mean x̄,

V [x̂] =
〈
x̂2
〉

− (< x̂ >)2 =

〈(
1

n

n∑
i=1

xi

) 1

n

n∑
j=1

xj

〉 − µ2

=
1

n2

n∑
i,j=1

< xixj > − µ2

=
1

n2
[(n2 − n)µ2 + n(µ2 + σ2)] − µ2 =

σ2

n

where, σ2 is the variance of f(x).
We used < xixj > = µ2 for i ̸= j and < x2i > = µ2 + σ2.
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Error on variance
The variance of estimator s2 is

V [s2] =
1

n

(
µ4 − n− 3

n− 1
µ2
2

)
where µk is the kth central moment, e.g. µ2 = σ2.
Using simple generalization of definition of s2,

µk =
1

n− 1

n∑
i=1

(xi − x̄)k

Similarly, the variance of r, considering 2d Gaussian pdf,

V [r] =
1

n
(1 − ρ2)2 + O(n−2)

Note that although V̂xy, s
2
x, and s2y are unbiased estimators of Vxy,

σ2
x, andσ

2
y , the nonlinear function V̂xy/(sxsy) is not an unbiased

estimator of Vxy/(σxσy).
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Method of maximum likelihood
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Likelihood function
Let a r.v. x, measured n times, giving values (x1, ..., xn). PDF of
x is f(x).
Then, prob. of x to be in [x, x+ dx] = f(x)dx.
Assuming xi are independent,

Prob.(xi in [xi, xi + dxi] for all i) =

n∏
i=1

f(xi)dxi

Defining,

L =

n∏
i=1

f(xi) (likelihood function)

If f(x) depends on some parameter θ,

L(θ) =

n∏
i=1

f(xi; θ)

In case, xi are not independent, L is the joint probability f(x⃗, θ).
Note: L(θ) is not same as probability. It is a function of θ, given a
sample of data xi. 17



Maximum likelihood method

It is a technique for estimating the values of parameters given a
finite data sample.

ML estimators: The estimator θ̂ for the parameter θ is the one
that maximizes the likelihood function.

i.e., the estimators are given by the solutions to the equations,

∂L

∂θi
= 0, i = 1, ...,m.

The estimators for θ⃗ = (θ1, ..., θm) is usually written as
ˆ⃗
θ = (θ̂1, ..., θ̂m) .

Advantages of ML method: Ease of use, no binning is necessary.
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Example: Exponential distribution

Consider an exponential pdf, with mean τ ,

f(t; τ) =
1

τ
e−t/τ ,

(PDF for proper decay times)
Suppose we have n measurements of t, (t1, ..., tn) (i.e., n decays)
Task: Estimate the value of the parameter τ .
Construct likelihood

L(τ) =

n∏
i=1

f(ti; τ)

Convenient to use log-likelihood function instead of likelihood
function.
Since the logarithm is a monotonically increasing function, the
parameter value which maximizes L will also maximize logL.
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Example: Exponential distribution – contd.

The log-likelihood function:

logL(τ) =

n∑
i=1

logf(ti; τ) =

n∑
i=1

(
log

1

τ
− t

τ

)
Advantage: The product in L is converted into a sum.

Maximizing logL wrt τ , gives ML estimator

∂logL(τ)

∂τ
= 0 ⇒ τ̂ =

1

n

n∑
i=1

ti

In this case the ML estimator is simply the sample mean of the
measured time values.
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Example: Exponential distribution – contd.

The expectation value of τ̂ is

⟨τ̂⟩ =

∫
...

∫
τ̂ fjoint(t1, ..., tn; τ)dt1...dtn

=

∫
...

∫ (
1

n

n∑
i=1

ti

)
1

τ
e−t1/τ ...

1

τ
e−tn/τdt1...dtn

=
1

n

n∑
i=1

∫ ...

∫
ti
1

τ
e−ti/τdti

∏
j ̸=i

1

τ
e−tj/τdtj


=

1

n

n∑
i=1

τ = τ.

Thus, τ̂ is an unbiased estimator for τ .

It was also shown previously that the sample mean is an unbiased
estimator of the population mean for any pdf.
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Example: Exponential distribution – contd.

Example: Consider a sample of 100 MC generated decay times
using a true lifetime τ = 1.0.

0 1 2 3 4 5
t

0

2

4

6

8

10

12

14

16

f(t
)

Fit (0.915)
True (1.000)
data

τ̂ = 0.915 from ML fit.
(Note: you may get different
value based on your generated
sample)

Exercise: Perform this MC experiment and estimate mean lifetime
from your dataset. Increase your MC statitics by factor of two and
check the result.
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Example: Exponential distribution – contd.

If a(θ) is a function of some parameter θ,

∂L

∂θ
=

∂L

∂a

∂a

∂θ
= 0

This implies,
∂L

∂a
= 0, if

∂a

∂θ
̸= 0

Thus, the ML estimator of a function can be obtained simply by
evaluating the function with the original ML estimator, â = a(θ̂).
So, the ML estimator for decay constant λ = 1/τ is
λ̂ = 1/τ̂ = n/

∑n
i=1 ti.

One can show that, the expectation value of λ̂ is〈
λ̂
〉

= λ
n

n− 1
=

1

τ

n

n− 1
.

λ̂ is only asymptotically unbiased.
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Example: Gaussian distribution
Suppose we have n measurements of a r.v. x, assumed to be
distributed according to a Gaussian pdf of unknown µ and σ.
The log-likelihood function is

logL(µ, σ2) =

n∑
i=1

log(xi;µ, σ
2)

=

n∑
i=1

(
log

1√
2π

+
1

2
log

1

σ2
− (xi − µ)2

2σ2

)
Maximizing logL with respect to µ gives,

µ̂ =
1

n

n∑
i=1

xi

Repeating the procedure for σ2 and using the result for µ̂ gives

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2
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Example: Gaussian distribution

Exercise: Show that ⟨µ̂⟩ = µ

and
〈
σ̂2
〉

= n−1
n σ2.

Thus, µ̂ is an unbiased estimator
while σ̂2 is only asymptotically
unbiased.

0 2 4 6 8 10
x

0

2

4

6

8

10

12 Fit (4.79,1.81)
True (5.00,2.00)
data

Recall from previous lecture: the sample variance, defined by

s2 =
1

n− 1

n∑
i=1

(xi − µ̂)2

is an unbiased estimator for variance for any pdf.
So, it is also an unbiased estimator for the parameter σ2 of the
Gaussian. But it is not the ML estimator.
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Variance of ML estimators

What is the statistical uncertainty on the estimates?

One way of estimating it is by considering the
variance (or standard deviation) of the estimator.

Different ways of estimating the variance:

1. Analytic method

2. Monte Carlo method

3. RCF bound

4. graphical method
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Analytic method

In certain cases it is possible to compute the variance using
analytic method
e.g., consider the exponential distribution with mean τ estimated
by τ̂ = 1

n

∑n
i=1 ti

V [τ̂ ] =
〈
τ̂2
〉

− ⟨τ̂⟩2

=

∫
...

∫ (
1

n

n∑
i=1

ti

)2
1

τ
e−t1/τ ...

1

τ
e−tn/τdt1...dtn

−
(∫

...

∫ (
1

n

n∑
i=1

ti

)
1

τ
e−t1/τ ...

1

τ
e−tn/τdt1...dtn

)2

=
τ2

n
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Analytic method – contd.

Note that V [τ̂ ] is a function of true parameter τ , which is
unknown.

How to report the statistical error of the experiment?

Using transformation invariance of ML estimators, we can obtain
ML estimate for the variance σ2

τ̂ = τ2/n, simply by replacing τ
with its own ML estimator τ̂ ,
Thus,

σ̂2
τ̂ =

τ̂2

n
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Monte Carlo Method

Useful when analytic method is not possible.
Procedure:
Simulate a large number of experiments and look at the
distribution of ML estimates from MC experiments.
In MC program, the estimated value of the parameter from the real
experiment can be used in place of the true parameter.

Example:
Consider again mean lifetime measurement with the exponential
distribution.
For true lifetime τ = 1.0, a sample n = 100 measurement gave
the ML estimate τ̂ = 0.915.
Considering this measurement as the real one, 1000 further
experiments are simulated with 100 measurements each (with
τ = 0.915).
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Monte Carlo Method – contd.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

τ̂

0

20

40

60

80

100

120

N
(τ̂

)

0.915 +/- 0.090

The sample mean of the
estimates τ̂ = 0.911.
This is close to the input value,
as expected, since ML estimator
τ̂ is unbiased.
The sample standard deviation
σ = 0.09,
essentially same as
σ̂τ̂ = τ̂ /

√
n = 0.915/

√
100

= 0.091

Note: the distribution is approximately Gaussian in shape → a
general property of ML estimators for the large sample limit,
known as asymptotic normality.
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RCF bound

Rao-Cramer-Frechet (RCF) inequality, also called the
information inequality
Provides a lower bound on an estimator’s variance.

V [θ̂] ≥
(
1 +

∂b

∂θ

)2
/〈

−∂2logL

∂θ2

〉
where b is the bias and L is the likelihood function.
In case of equality (i.e. minimum variance) the estimator is said to
be efficient.
It can be shown that ML estimators are efficient in large sample
limit.
In practice → Assume efficiency and zero bias.
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RCF bound – contd.

Consider exponential distribution with mean τ

∂2logL

∂τ2
=

n

τ2

(
1 − 2

τ

1

n

n∑
i=1

ti

)
=

n

τ2

(
1 − 2τ̂

τ

)
Since b = 0, the RCF bound is

V [τ̂ ] ≥ 1〈
− n

τ2

(
1 − 2τ̂

τ

)〉 =
1

− n
τ2

(
1 − 2⟨τ̂⟩

τ

) =
τ2

n

This is same as what we got from exact calculation. In this case
equality holds, since τ̂ is an efficient estimator for τ .
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RCF bound – contd.

In case of more than one parameter, the corresponding formula for

inverse of the covariance matrix Vij = cov
[
θ̂i, θ̂j

]
is

(
V −1

)
ij

=

〈
−∂2logL

∂θi∂θj

〉
=

∫
...

∫
∂2

∂θi∂θj

(
n∑

k=1

logf(xk; θ)

)
n∏

l=1

f(xl; θ)dxl

= n

∫
−f(x; θ)

∂2

∂θi∂θj
logf(x; θ)dx

f(x; θ) is pdf for r.v. x, for which there are n measurements.
Note: V −1 ∝ n or V ∝ 1/n
=⇒ a well known result that stat. errors decrease in ∝ 1/

√
n
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RCF bound – contd.

In many situations it is impractical to compute RCF bound
analytically.
For sufficiently large data sample, V −1 can be estimated by
evaluating 2nd derivative with the measuremed data and the ML
estimates θ̂ (

V̂ −1
)
ij

= − ∂2logL

∂θi∂θj

∣∣∣∣
θ=θ̂

For single parameter,

σ̂2
θ̂

=

(
−1

/
∂2logL

∂θ2

) ∣∣∣∣
θ=θ̂

Usual method for estimating cov. matrix when likelihood function
is maximized numerically.
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Graphical method
An extension of RCF bound
Expanding log-likelihood function about the ML estimate θ̂,

logL(θ) = logL(θ̂) +

[
∂logL

∂θ

]
θ=θ̂

(θ−θ̂) +
1

2

[
∂2logL

∂θ2

]
θ=θ̂

(θ−θ̂)2 + ...

By definition logL(θ̂) = logLmax and 2nd term is zero. Thus,

logL(θ) = logLmax − (θ − θ̂)2

2σ̂2
θ̂

or

logL(θ̂ ± σ̂θ̂) = logLmax − 1

2
i.e. a change in the parameter θ of one standard deviation from its
ML estimate leads to a decrease in the log-likelihood of 1/2 from
its maximum value.
It is also possible to show that the log-likelihood function becomes
a parabola (i.e. the likelihood function becomes a Gaussian curve)
in the large sample limit.
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Graphical method – Example

More convenient to use −2logL(θ̂ ± σ̂θ̂) = − 2logLmax + 1.

Example: Consider again the example of exponential distribution.
The log-likelihood function −2log(τ) as a function of the
parameter τ for a Monte Carlo experiment consisting of 100
measurements.

0.75 0.80 0.85 0.90 0.95 1.00 1.05

τ

182.5

183.0

183.5

184.0

184.5

185.0

185.5

-2
lo

gL
(τ

)

τ̂ − σ− τ̂ + σ+ The obtained one standard
deviations in this case are
∆τ̂− = 0.086 and ∆τ̂+ = 0.095.
Approximately same as
σ̂τ̂ = τ̂ /

√
n = 0.091

In this case −2log(τ) is reasonably close to a parabola.
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Extended maximum likelihood

If the n (no. of observations) is itself a Poisson r.v with a mean
= ν, then the likelihood function becomes

L(ν, θ) =
νn

n!
e−ν

n∏
i=1

f(xi; θ) =
e−ν

n!

n∏
i=1

νf(xi; θ)

called the extended likelihood function.

Two possible situtaions:
(1) when ν is a function of θ, and
(2) when ν is an independent parameter.
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Extended maximum likelihood – contd.

When ν is a function of θ, the extended log-likelihood function is

logL(θ) = nlogν(θ) − ν(θ) +

n∑
i=1

logf(xi; θ) + const.

= − ν(θ) +

n∑
i=1

log(ν(θ)) +

n∑
i=1

logf(xi; θ) + const.

= − ν(θ) +
n∑

i=1

log(ν(θ)f(xi; θ))

Including the Poisson term the resulting estimators θ̂ exploits the
information from n as well as from the variable x ⇒ smaller
variances for θ̂.

38



Extended maximum likelihood – contd.

If ν does not depend on θ ⇒ ν̂ = n, and θ̂i are same as the
usual ML case.
However, still helpful in cases, e.g. when the pdf is the
superposition of several components,

f(x; θ) =

m∑
i=1

θifi(x),

where, fi(x) are all known and θi are not all independent, but∑m
i=1 θi = 1.

Then the logL becomes

logL(ν, θ) = − ν +

n∑
i=1

log

 m∑
j=1

νθjfj(xi)
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Extended maximum likelihood – contd.

Defining µi = θiν,

logL(µ) = − ν

m∑
j=1

θj +

n∑
i=1

log

 m∑
j=1

νθjfj(xi)


=

m∑
j=i

µj +

n∑
i=1

log

 m∑
j=1

µjfj(xi)


▶ Parameters µ = (µ1, ..., µm) are not subject to a constraint

and n is a sum of independent Poisson variables with means
µj

▶ Estimators µ̂j give directly the estimated mean numbers of
events of different types, which is equivalent to
µ̂j = θ̂j ν̂ = θ̂jn
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Extended maximum likelihood - Example

Let data sample consisting of two types of events: signal and
background
fs(x) is Gaussian and fb(x) is Exponential

Number of signal events: ns (Poisson distributed with mean µs),
Number of bkg events: nb (Poisson distributed with a mean µb)

The pdf of x:

f(x) =
µs

µs + µb
fs(x) +

µb

µs + µb
fb(x)

Suppose we observed n = ns + nb events. Fit to estimate µs and
µb.

41



Extended maximum likelihood - Example

MC samples generated using using µs = 400 and µb = 1600
Extended ML fit for both µs and µb.
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E
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1 

)

Example of pdf=(sig + bkg)

The estimated
values from the fit:
µ̂s = 8.7 and
σ̂s = 5.5
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Extended maximum likelihood - Example
For more than one parameters the covariance matrix can be
computed.
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Countour of constant likelihood for one and two standard
deviations.
The tangets to the curve correspond to n̂s ± σ̂ns and n̂b ± σ̂nb

.
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ML with binned data
For very large data sample one can make histograms instead of
recording each measurement separately.
Number of entries n = n1, ....nN in N bins, with

∑N
i=1 ni = ntot.

The expectation values ν = ν1, ..., νN of the numbers of entries are

νi(θ) = ntot

∫ xmax
i

xmin
i

f(x; θ)dx,

Considering the histogram as a single measurement of an
N -dimensional random vector, joint pdf is

fjoint(n; ν) =
ntot!

n1!...nN !

(
ν1
ntot

)n1

...

(
νN
ntot

)nN

νi/ntot = probability for the event to be in bin i.
And, the logL function

logL(θ) =

N∑
i=1

nilogνi(θ) + const.
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ML with binned data – contd.
Suppose ntot is a r.v. from a Poisson distribution with mean νtot.
The joint pdf will be

fjoint(n; ν) =
νntot
tot e−νtot

ntot!

ntot!

n1!...nN !

(
ν1
νtot

)n1

...

(
νN
νtot

)nN

,

‘where, νtot =
∑N

i=1 νi and ntot =
∑N

i=1 ni. Implies,

fjoint(n; ν) =

N∏
i=1

νni
i

ni!
e−νi ,

where the expected number of entries in each bin νi now depends
on the parameters θ and νtot,

νi(νtot, θ) = νtot

∫ xmax
i

xmin
i

f(x; θ)dx

This is equivalent to treating the number of entries in each bin as
an independent Poisson r.v. ni with mean value νi.
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ML with binned data – contd.

The logL (dropping the constant terms) becomes,

logL(νtot, θ) = − νtot +

N∑
i=1

nilogνi(νtot, θ)

This is the extended log-likelihood function for the case of binned
data.
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ML with binned data - Example

Consider our previous exercises of 100 measurements
Histograms with a bin width of ∆t = 0.25 along with the results
of the ML fit.
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Good agreements with unbinned fit results.
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Testing goodness-of-fit
Principle of ML does not directly suggest a method of testing
goodness-of-fit.
Possible in some cases to obtain a g.o.f. measurement by finding a
proper ratio of likelihood functions
e.g. Consider the ratio

λ =
L(n|ν)
L(n|n) =

fjoint(n; ν)

fjoint(n;n)

For Poisson distributed data

λP = entot−νtot

N∏
i=1

(
νi
ni

)ni

If the hypothesis is correct, in the large sample limit, the statistic

χ2
P = −2logλP = 2

N∑
i=1

(
nilog

ni

ν̂i
+ ν̂i − ni

)
follows a χ2 distribution for N −m degrees of freedom.
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Method of least squares
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Relation to Maximum Likelihood
Usually a measured value y can be regared as Gaussian r.v.
centered around true value λ (Follows from the CLT).

Consider N independent Gaussian r.v. yi, related to another
variable xi, e.g. some measurements at positions xi.

Assume λi (unknown) are mean of yi and σ2
i (known) are

variances.

yis can be regarded as a single
measurement of N -d random
vector, the joint pdf will be

g(y1, ..., yN ;λ1, ..., λN , σ2
1, ..., σ

2
N )

=

N∏
i=1

1√
2πσ2

i

exp

(−(yi − λi)
2

2σ2
i

)
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Relation to Maximum Likelihood – contd.
Suppose λ = λ(x; θ), estimate θ, where θ = (θ1, ..., θm) are
unknown parameters.

The logarithm of the joint pdf (or the likelihood) [dropping
additive terms]

logL(θ) = −1

2

N∑
i=1

(yi − λ(xi; θ))
2

σ2
i

Maximizing logL(θ) is same as minimizing

χ2(θ) = −2logL(θ) =

N∑
i=1

(yi − λ(xi; θ))
2

σ2
i

This is the basis of the method of least squares (LS). Also used
when yi are not Gaussian, as long as they are independent.

The parameters that minimize the χ2 are called the LS estimators,
θ̂ = (θ̂1, ..., θ̂m). The resulting mimimum χ2 follows, under certian
circumstances, the Chi-square distribution.
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χ2 for non-independent measurements

If yi are described by N -d Gaussian PDF with known covariance
matrix V , the log-likelihood from joint PDF is

logL(θ) = −1

2

N∑
i,j=1

(yi − λ(xi; θ))(V
−1)ij(yj − λ(xj ; θ))

and, therefore

χ2(θ) =

N∑
i,j=1

(yi − λ(xi; θ))(V
−1)ij(yj − λ(xj ; θ))

Will reduce to previous expression if V is diagonal.
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Linear least-square fit
If λ is a linear function of θ

λ(x; θ) =

m∑
j=1

aj(x)θj

aj(x) are any linearly independent functions of x.
In this case, the estimators and their variances can be found
analytically. Also, the estimators have zero bias and minimum
variance.
At xi,

λ(xi; θ) =

m∑
j=1

aj(xi)θj =

m∑
j=1

Aijθj

Then, in matrix notation

χ2 = (y − λ)TV −1(y − λ)

= (y −Aθ)TV −1(y −Aθ)

where y = (y1, ..., yN ) and λ = (λ1, ..., λN ).
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Linear least-square fit

Minimizing χ2 w.r.t θi,

∆χ2 = −2(ATV −1y −ATV −1Aθ) = 0

If ATV −1A is not singular,

θ̂ = (ATV −1A)−1ATV −1y ≡ By

i.e. θ̂ are linear functions of the original measurements y.
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Variance of LS estimators

Using error propagation to find the covariance matrix
Uij = cov[θ̂i, θ̂j ],

U = BV BT = (ATV −1A)−1

Equivalently,

(U−1)ij =
1

2

[
∂2χ2

∂θi∂θj

] ∣∣∣∣
θ=θ̂

Note: it coincides with RCF bound when yi are Gaussian
distributed.
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Variance of LS estimators

For λ(x; θ) linear in θ, χ2 is quadratic in θ

χ2(θ) = χ2(θ̂) +
1

2

m∑
i,j=1

[
∂2χ2

∂θi∂θj

] ∣∣∣∣
θ=θ̂

(θi − θ̂i)(θj − θ̂j)

Combining with expression for variance yields 1σ contours in
parameter space. i.e. for θi = θ̂i ± σ̂i

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1

Similar to the contour of constant likelihood in the ML method.

Note: If λ is not linear in θ, then the contour is not in general
elliptical. So, the tangents do not correspond to one standard
deviations, but defines a region in parameter space which can be
interpreted as a confidence region.
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Example: Least squares fit of a polynomial
Consider λ a polynomial of order m (i.e. m+ 1 parameters)

λ(x; θ0, ..., θm) =

m∑
j=0

xjθj
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Example of fit to 0th, 1st, and 2nd order polynomials for five
measured points. χ2 function as a function of the parameter p1
(slope) is shown for 1st order polynomial.
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LS with binned data

Consider a binned data of n observations of x, filled into a
histogram with N bins.
If yi = number of entries in bin i, f(x; θ) is a hypothesized PDF,
then, the number of entries predicted in bin i, λi = ⟨yi⟩,

λi(θ) = n

∫ xmax
i

xmin
i

f(x; θ)dx = npi(θ)

where, pi(θ) is the probability to have an entry in bin i.
Then, χ2 function becomes

χ2(θ) =

N∑
i=1

(yi − λi(θ))
2

σ2
i

σ2
i is the variance of the no. of entries in bin i.
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LS with binned data
If ⟨yi⟩ = λi are small compared to the total number of entries,
then, yi are approximately Poisson distributed. i.e. variance =
mean. Thus,

χ2(θ) =

N∑
i=1

(yi − λi(θ))
2

λi(θ)
=

N∑
i=1

(yi − npi(θ))
2

npi(θ)

Alternatively, one can approximate σ2
i = yi (entries actually

observed instead of predicted). In that case

χ2(θ) =

N∑
i=1

(yi − λi(θ))
2

yi
=

N∑
i=1

(yi − npi(θ))
2

yi

So-called modified least-squares method (MLS method).
Advantage: computationally easier, Disadvantage: errors may be
poorly estimated (or χ2 may even be undefined) if any of the bins
contain few or no entries.
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LS with binned data – Example

Consider our previous exercises of 100 measurements
Histograms with a bin width of ∆t = 0.25 along with the results
of the LS fit.
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Good agreements with ML fit results.
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Testing goodness-of-fit

(yi − λ(xi; θ))/σi is a measure of the deviation between yi and the
function λ(xi; θ) ⇒ χ2 is a measure of total agreement between
observed data and hypothesis.

If,

1. yi (i = 1 to N) are independent Gaussian r.v. with known
variances (or N-d Gaussian with known cov. matrix ),

2. the hypothesis λ is linear in θj (j = 1 to m),

3. the functional form of the hypothesis is correct,

then, χ2
min is distributed according the χ2 distribution with N −m

d.o.f.
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Testing goodness-of-fit

We know ⟨z⟩ = nd for χ2 distribution.
Thus, χ2/nd is a measure of the g.o.f.

If

▶ χ2/nd is similar to 1: Fit is
good.

▶ χ2/nd is much less than 1:
Fit is too good. Should
check whether errors are
overestimated or correlated.

▶ χ2/nd is much larger than
1: Decide whether the
hypothesis can be rejected
based on the P -value.

P =

∫ ∞

χ2

f(z;nd)dz
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END
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