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Parameter estimation

Suppose z is a random variable described by pdf f(z)
Sample space: Set of all possible values of z.

sample: A set of n independent observations of x is a smaple of
size n.

Assuming all z; are independent, we can write the joint pdf
fsample(mla vy xn) as

fsample($17"-,xn) = Hf(ml)



Parameter estimation — contd.

» Suppose we have n-measurements of x, whose pdf f(z) is not
known. Problem: Infer properties of f(z) based on the
observations.

» Suppose we have a hypothesis that describes the pdf f(z,0),
where 6 is unknown parameter(s).
Example: Suppose we have a radio active source whose
lifetime is not known. We know that the decay rate is
distributed according to exponential distribution, with
parameter 7 (lifetime).

> parameter fitting: Estimate the parameter value(s) given n
measurements 1, ..., T, (data).
Goal is to construct a function of z; to estimate the
parameter(s).



Estimator(s)

Estimator: A function of observed measurements x4, ..., z,,, which
is used to estimate some property of a pdf (e.g. mean, variance or
some other parameters)

An estimator for 6 is usually written as 6. The numerical value of
the estimator evaluated with a particular sample is called an
estimate.

If 6 converges to 6 in the limit of large n, the estimator is said to
be consistent.

Limit of large n is typically referred as ‘large sample’ or
‘asymptotic’ limit.



Mean value of Estimator

A func:cion of random variables is also a randonj variable
= 0 is a random variable, with some pdf g(6;0).
The prob. distribution of 6 is called a sampling distribution.

The expectation value of 6
<@ > = / 0g(0: 0)d0
= /.../é(f)fsample(xl,...,xn;ﬂ)dxl...d:nn

_/ /9 (210)...f (2n: ) da1...dn

This is the expected mean value of 6 from an infinite number of
similar experiments, each with a sample of size n.



Quality of Estimators

Define bias,
b=<0(x)> — 0
b depends on
> sample size,
» functional form of the estimator, and
» the true properties of the pdf f(x,8).

If b = 0, irrespective of sample size n, 0 is unbiased.
Ifb — 0, in the limitn — oo, 6 is asymptotically unbiased.

In most practical cases, the bias is small compared to the
statistical error (i.e. the standard deviation).



Quality of Estimators — contd.

The mean squared error,

MSE = <(0 — 02> = <6 + 6> — 200>
= <> + 6 -2<60>0
= <(0—<0>)r>+(<0—0>)?
= VI + b?

The MSE is the sum of the variance and the bias squared

N

An estimator is considered optimal if b = 0 and V[0] is
minimum, though M SFE could also be considered.



Estimator for Mean

Consider a sample of a r.v. z, of size n: (z1,...,2p).

The pdf f(x) is not known.

Aim: Construct a function ¢(z1, ..., z,) to be an estimator for
population mean < x >= p.

The arithmetic mean or sample mean is

n
_ 1
.%'Z*E ZT;
n <
=1

T can be considered to be an estimator for < x >.

Weak law of large numbers: If the variance of x exists, then T is
a consistent estimator for the population mean < z >.,

i.e. for n — oo, T converges to .

Note that the law holds irrespective of the form of pdf f(x).



Estimator for Mean — contd.

The expectation value of the sample mean,

1 < 1 < 1 <
<xr> = — T; = — <z > = — no=

since

< x> / /:vzf x1)...f(zp)dry..dxy, = p

for all 7.

Hence, the sample mean T is an unbiased estimator for the
population mean p.
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Estimator for Variance

The sample variance s, defined by

1
— > (@ + 7 - 2a7)

n—14%
=1

1 n n n
= (Zx? + Z:E2 - 2m2x,>
i=1 i=1 i=1

1 _
= (an + nz? — 27@2)

n—1
n PR
_ 2 72
= — (22 — &
p— 1 )
Exercise: Show that < s2 > = o2

So, s? is an unbiased estimator for the population variance.
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Estimator for Variance — contd.

In case the population mean, u, is known, define

1 _
s = EZ(% — p? =2t -y
=1
In this case, < S2 > = 02, = 52 is an unbiased estimator of
the variance o2.
Similarly,
1 ° n
Vay = n_I;(mi—f)(yi—y) = — (@ - )

is an unbiased estimator for the covariance V,, of two random
variables  and y of unknown mean.
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Estimator for correlation coefficient

The estimator r for the correlation coefficient, p,

ny 2?21(1'1 —Z)(yi — ¥)

r = =
Sz5y n 7)2 .y 2) "2
(Zpo (o = 202 (e — 9)?)
Ty —xY
V@ -2)07 - )
The expectation value of r depend on higher moments of the joint
pdf f(x,y). For 2d Gaussian pdf,

p(l—p2) + (’)(n_2)

<r> =p — 5

Thus, the estimator 7 is only asymptotically unbiased. Still it is
widely used because of its simplicity.
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Error on mean
Given an estimator 6, we can compute its variance
Vi = <é2> - << 0 >)2.
Note: V[é] is a measure of the variation of § about its mean in a
large number of similar experiments each with sample size n

— statistical error of 0
e.g., the variance of sample mean Z,

Viz] = (3% - (<2>)? = <<izxz> :LZ% > — 22

1 & )
3,j=1

= 50?4 G+ o) - =

where, o2 is the variance of f(x).
We used < w;z; > = p’fori#jand <a?> = p?+o2
14



Error on variance
The variance of estimator s2 is

1 n—3
Vel = (- 20)

where 1, is the kth central moment, e.g. jo = o2

Using simple generalization of definition of s2,

1 < ok
e = n_l;(l‘i—x)
1=

Similarly, the variance of r, considering 2d Gaussian pdf,

Vil = (1 = ) + O

Note that although ny, s%, and SZ are unbiased estimators of V,,

02, ando?, the nonlinear function V,/(szs,) is not an unbiased

estimator of V,,/(0,0y).



Method of maximum likelihood
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Likelihood function
Let a r.v. z, measured n times, giving values (z1,...,z,). PDF of
xis f(z).
Then, prob. of x to be in [z,z + dx] = f(x)dx.
Assuming x; are independent,

Prob.(z; in [z, x; + dz;] for all i) = Hf(:ni)dxi
i=1
Defining,
L = J[f() (ikelihood function)
i=1

If f(z) depends on some parameter 6,
L) = ] f(=::0)
i=1

In case, z; are not independent, L is the joint probability f(&,0).
Note: L(6) is not same as probability. It is a function of 6, given a
sample of data z;.



Maximum likelihood method

It is a technique for estimating the values of parameters given a
finite data sample.

ML estimators: The estimator 0 for the parameter 0 is the one
that maximizes the likelihood function.

i.e., the estimators are given by the solutions to the equations,

oL
00;

=0, t:=1,...m.

The estimators for = (61, ..., 0,,) is usually written as
6= (64,..,0m) .

Advantages of ML method: Ease of use, no binning is necessary.



Example: Exponential distribution

Consider an exponential pdf, with mean T,

fltr) = e,
T
(PDF for proper decay times)
Suppose we have n measurements of ¢, (¢1,...,t,) (i.e., n decays)
Task: Estimate the value of the parameter 7.
Construct likelihood

n

L(r) = []fi7)
i=1
Convenient to use log-likelihood function instead of likelihood

function.
Since the logarithm is a monotonically increasing function, the
parameter value which maximizes L will also maximize logL.
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Example: Exponential distribution — contd.

The log-likelihood function:

logL(T) = Zlogf(ti;T) = Z(logl _ t>
=1

P T T
Advantage: The product in L is converted into a sum.
Maximizing logL wrt 7, gives ML estimator

OlogL(t) L Lg
&_—OéT—n;tz

In this case the ML estimator is simply the sample mean of the
measured time values.

20



Example: Exponential distribution — contd.

The expectation value of 7 is

/.../’f'fjoint(tl,...,tn;T)dtl‘..dtn
—t1/T 1 —tn/’r
Zt e Tty Lty

= *Z / /te_t/Tdt H e_tJ/Tdt
J#l
- leIT -

Thus, 7 is an unbiased estimator for 7.

It was also shown previously that the sample mean is an unbiased
estimator of the population mean for any pdf.
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Example: Exponential distribution — contd.

Example: Consider a sample of 100 MC generated decay times
using a true lifetime 7 = 1.0.

— Fit (0.915)
— True (1.000)
& data

7 = 0.915 from ML fit.
(Note: you may get different
value based on your generated
sample)

Exercise: Perform this MC experiment and estimate mean lifetime
from your dataset. Increase your MC statitics by factor of two and
check the result.

22



Example: Exponential distribution — contd.

If a(#) is a function of some parameter 6,

oL _ 0Lda _
00  Oa 00
This implies,
oL da
i T
ga =0 T g 70
Thus, the ML estimator of a function can be obtained simply byA
evaluating the function with the original ML estimator, @ = a(6).

So, the ML estimator for decay constant A\ = 1/7 is
A =1/ =n/Y 0"t
One can show that, the expectation value of A is

B =35 -

\is only asymptotically unbiased.

23



Example: Gaussian distribution

Suppose we have n measurements of a r.v. x, assumed to be
distributed according to a Gaussian pdf of unknown p and o.
The log-likelihood function is

logL(p,0%) = Y log(as; p,0”)
=1

n

1 11 (z; — p)?
= l —log— — ———
; ( Og\/27r + 2 0902 202
Maximizing logL with respect to p gives,

1 n
o= szl
i=1

Repeating the procedure for o and using the result for /i gives
5 1 <& e
? = L5 - )

n -
=1

24



Example: Gaussian distribution

12 — Fit(4.79,1.81)

Exercise: Show that (i) = u T
and <0A?> = "77102. .
Thus, /i is an unbiased estimator
while o2 is only asymptotically
unbiased.

n—14
=1
is an unbiased estimator for variance for any pdf.
So, it is also an unbiased estimator for the parameter o2 of the
Gaussian. But it is not the ML estimator.

25



Variance of ML estimators

What is the statistical uncertainty on the estimates?

One way of estimating it is by considering the

variance (or standard deviation) of the estimator.

Different ways of estimating the variance:
1. Analytic method
2. Monte Carlo method
3. RCF bound

4. graphical method

26



Analytic method
In certain cases it is possible to compute the variance using

analytic method
e.g., consider the exponential distribution with mean 7 estimated

by # = 5 Xt

ViF] = (%) - (#)?

27



Analytic method — contd.

Note that V[7] is a function of true parameter 7, which is
unknown.

How to report the statistical error of the experiment?

Using transformation invariance of ML estimators, we can obtain

ML estimate for the variance ag = 72/n, simply by replacing 7
with its own ML estimator 7,
Thus,
~2
-5 T
72 =

Ton

28



Monte Carlo Method

Useful when analytic method is not possible.

Procedure:

Simulate a large number of experiments and look at the
distribution of ML estimates from MC experiments.

In MC program, the estimated value of the parameter from the real
experiment can be used in place of the true parameter.

Example:

Consider again mean lifetime measurement with the exponential
distribution.

For true lifetime 7 = 1.0, a sample n = 100 measurement gave
the ML estimate 7 = 0.915.

Considering this measurement as the real one, 1000 further
experiments are simulated with 100 measurements each (with

7 = 0.915).

29



Monte Carlo Method — contd.

The sample mean of the

estimates 7 = 0.911.

This is close to the input value,

as expected, since ML estimator

7 is unbiased.

The sample standard deviation

o = 0.09,

essentially same as

B R o; = 7/y/n = 0.915/4/100
= 0.091

Note: the distribution is approximately Gaussian in shape — a

general property of ML estimators for the large sample limit,

known as asymptotic normality.

120 — 0915 +/- 0.090
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RCF bound

Rao-Cramer-Frechet (RCF) inequality, also called the
information inequality
Provides a lower bound on an estimator’s variance.

X b\ d%logL
v = (1+5) /<— )

where b is the bias and L is the likelihood function.
In case of equality (i.e. minimum variance) the estimator is said to
be efficient.
It can be shown that ML estimators are efficient in large sample
limit.
In practice — Assume efficiency and zero bias.

31



RCF bound — contd.

Consider exponential distribution with mean 7
Flogl _ n () 215~ _m(; 2
orz 72 Tnée=") 72 T

Since b = 0, the RCF bound is

This is same as what we got from exact calculation. In this case
equality holds, since 7 is an efficient estimator for 7.

32



RCF bound — contd.

In case of more than one parameter, the corresponding formula for
inverse of the covariance matrix V;; = cov [Qi, 03} is

/. 0logL
iy 00,00

2 n
- ] s (Zlogf(xk;9)> T1 /(s 0)c
T \k=1

=1

(v

82
= n/f(x;G)mlogf(x;H)d:U

f(x;0) is pdf for r.v. x, for which there are n measurements.
Note: V! o norV o 1/n
= a well known result that stat. errors decrease in o 1/y/n

33



RCF bound — contd.

In many situations it is impractical to compute RCF bound
analytically.

For sufficiently large data sample, V! can be estimated by
evaluating 2nd derivative with the measuremed data and the ML
estimates 6

_ 2
(V_l)ij - _?)Blioé)g@f

=0
For single parameter,

-5 0?%logL
2 _
% = <_1/ 062 )

Usual method for estimating cov. matrix when likelihood function
is maximized numerically.

0=0
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Graphical method
An extension of RCF bound R
Expanding log-likelihood function about the ML estimate 6,

OlogL ~ 1 [0%logL A9
20 L:é(9—9)+2[ 902 L:é(e—e) + ...

By definition logL(é) = logLma, and 2nd term is zero. Thus,
0 —0)?
lOgL(H) = logLmaz — ( /\)
209%

logL(#) = logL(f) + [

or
1

2

i.e. a change in the parameter 6 of one standard deviation from its
ML estimate leads to a decrease in the log-likelihood of 1/2 from
its maximum value.

It is also possible to show that the log-likelihood function becomes
a parabola (i.e. the likelihood function becomes a Gaussian curve)
in the large sample limit.

lOgL(é + 6’;) = logLmaz —

35



Graphical method — Example

More convenient to use —2logL(é + 0;) = —2logLlmaz + 1.

Example: Consider again the example of exponential distribution.
The log-likelihood function —2log(7) as a function of the
parameter 7 for a Monte Carlo experiment consisting of 100
measurements.

F—o Fo, The obtained one standard
deviations in this case are

Approximately same as
o; = 7/v/n = 0.091

In this case —2log(T) is reasonably close to a parabola.

A7_ =0.086 and A7 = 0.095.

36



Extended maximum likelihood

If the n (no. of observations) is itself a Poisson r.v with a mean
= v, then the likelihood function becomes

n n
n v
14

Lw.6) = “e " [[ fais0) = en! [[v/(i6)
=1

i=1

called the extended likelihood function.

Two possible situtaions:
(1) when v is a function of 6, and
(2) when v is an independent parameter.

37



Extended maximum likelihood — contd.

When v is a function of 6, the extended log-likelihood function is

logL(0) = nlogv(0) — v(f) + Zlogf(a:i;e)—i—const.

i=1
= —v(d) + Zlog(u(@)) + Zlogf(:r¢;9)+const.
=1 =1

- () + Zlog(V(é’)f(ﬂfi%g))

Including the Poisson term the resulting estimators 6 exploits the
information from n as well as from the variable x = smaller
variances for 6.
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Extended maximum likelihood — contd.

If v does not depend on § = © = n, and 0; are same as the
usual ML case.

However, still helpful in cases, e.g. when the pdf is the
superposition of several components,

fla;0) = Y 6ifi(x),
i=1

where, fi(z) are all known and 6; are not all independent, but

om0, = 1.
Then the logL becomes

m

logL(v,0) = —v + Zlog Zl/ejfj(:ci)
i=1

J=1

39



Extended maximum likelihood — contd.

Defining u; = 6;v,

m

logL(p) = —I/ZQj + Zlog ZVajfj(HTi)
j=1 i=1

j=1
m n m

= > wi+ Y log | > pifi()
=i i=1 =1

» Parameters = (1, ..., 4 ) are not subject to a constraint
and n is a sum of independent Poisson variables with means
Hj

» Estimators /i; give directly the estimated mean numbers of
events of different types, which is equivalent to
/lj = éjﬁ = éjn

40



Extended maximum likelihood - Example

Let data sample consisting of two types of events: signal and
background
fs(x) is Gaussian and fy(z) is Exponential

Number of signal events: ng (Poisson distributed with mean pu),
Number of bkg events: n; (Poisson distributed with a mean ;)

The pdf of z:

__ Hs b
fa) = )+ )

Suppose we observed n = ng + ny events. Fit to estimate us and
Hb-

41



Extended maximum likelihood - Example

MC samples generated using using us = 400 and p, = 1600
Extended ML fit for both us and .

Example of pdf=(sig + bkg)

S s
£ 7o
o F )
60 The estimated
50 values from the fit:
ok ,LALS = 8.7 and
0s = 5.5
30[}
20i
P AR L . S
Fooli bl \ i ;\
5

I T N EEETE ES FRRT RN S0 N AR
8 26 27 28 29 3 31 32 33 34 35
m (GeV)



Extended maximum likelihood - Example

For more than one parameters the covariance matrix can be

computed.
Covariance between nsig and nbkg Covariance between nsig and nbkg
#1650 9
s £ 1 =4 L
g F T s [
1640 1700~
- F t <= °r
g F 2
31630 L 3 [
S = 5 [
2 F 2t
& 1620 §1650—
ST S°EC
1610 [
1600 1600
1590 [
1580 15501
1570 L L e
1560 B 1 15001~
b L L L L L IS O NP PN AP P U B
40 360 380 400 420 440 300 320 340 360 380 400 420 440 460 480 500
signal event signal events

Countour of constant likelihood for one and two standard
deviations.
The tangets to the curve correspond to 7t £ 0y, and 13y, & 0, .
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ML with binned data

For very large data sample one can make histograms instead of
recording each measurement separately.

. . . . N
Number of entries n = ny,....nxy in N bins, with Z’i:l Ny = MNtot.
The expectation values v = v, ..., vy of the numbers of entries are

max

vi(0) = ntat/ 1‘ f(z;0)dx,

3

Considering the histogram as a single measurement of an
N-dimensional random vector, joint pdf is

| ni nN
. Niot: 4! VN
fjm‘mg<n7 V) = 7' 1
ni:..nN- Nitot Nitot

v; /nior = probability for the event to be in bin i.
And, the logL function

N
logL(0) = Znilogw(e) + const.
i=1

44



ML with binned data — contd.

Suppose 714 is a r.v. from a Poisson distribution with mean ;.
The joint pdf will be

n — ni nN
N ‘ _ Vpte et Tot! 1 VN
ij’Lnt(nv V) = T ' ,

Ntot: nil..nn! \ Vot Vtot
. N N .
where, vyor = > ;i viand ngy = > ;- ni. Implies,
N .
2
fjoint(n§V) = H '6 )
1 n;.:
1=

where the expected number of entries in each bin v; now depends
on the parameters 6 and vy,

x;nax
Vi(Viot, 0) = Vtot/ f(z;0)dx

min
Zi

This is equivalent to treating the number of entries in each bin as
an independent Poisson r.v. n; with mean value v;.
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ML with binned data — contd.

The logL (dropping the constant terms) becomes,

N
logL(viot,0) = — ot + ZniZOQVi(Vtot,Q)
i=1

This is the extended log-likelihood function for the case of binned
data.
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ML with binned data - Example

Consider our previous exercises of 100 measurements
Histograms with a bin width of At = 0.25 along with the results
of the ML fit.

30
= data -t

—— Fit:(n = 100.45, tau = 0.92) —— Fit{(n=99.50,:=4.87,0=178)

N(©)/0.25

Good agreements with unbinned fit results.

47



Testing goodness-of-fit
Principle of ML does not directly suggest a method of testing
goodness-of-fit.
Possible in some cases to obtain a g.o.f. measurement by finding a
proper ratio of likelihood functions
e.g. Consider the ratio

Ln[v)  fijoint(n;v)

L(nn) — fjomt(n;n)

For Poisson distributed data

N N\ T
)\P — entot*l/tot H ﬁ
g

i=1
If the hypothesis is correct, in the large sample limit, the statistic

A\ =

N
X% = —2loglp = 22 (nilognZ + v — nz)

]j.
i=1 v

follows a x? distribution for N — m degrees of freedom.



Method of least squares
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Relation to Maximum Likelihood
Usually a measured value y can be regared as Gaussian r.v.
centered around true value A (Follows from the CLT).

Consider N independent Gaussian r.v. y;, related to another
variable z;, e.g. some measurements at positions x;.

Assume \; (unknown) are mean of y; and o2 (known) are
variances.

;S can be regarded as a single
measurement of N-d random
vector, the joint pdf will be

15

g(yl, -y YN; Al, ceey )\N, O’%, ...,012\7)
~(yi - m?) os |

= ﬂ ! exp <
= P
i=1 /2702 207 P

Ax;0) —
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Relation to Maximum Likelihood — contd.

Suppose A = A(z;6), estimate 6, where 6 = (04, ...,6,,) are
unknown parameters.

The logarithm of the joint pdf (or the likelihood) [dropping
additive terms]

N
1 xl, ))2
logL(6 —3 E

=1
Maximizing logL(6) is same as minimizing

N
i — Mxi;0))
() = —2logr(0) = S WA
i=1 @
This is the basis of the method of least squares (LS). Also used
when y; are not Gaussian, as long as they are independent.

The parameters that minimize the X2 are called the LS estimators,

6 = (él, ,ém) The resulting mimimum y? follows, under certian
circumstances, the Chi-square distribution.
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x? for non-independent measurements

If y; are described by N-d Gaussian PDF with known covariance
matrix V', the log-likelihood from joint PDF is

N
1ogL(#) = —3 > (i — Mz 0)(V )05 — Ala; )
ij=1
and, therefore
N
X0 = Y (i — Mws ) (V7 is(y; — A3 6))
ij=1

Will reduce to previous expression if V' is diagonal.
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Linear least-square fit

If XAis a linear function of 6

m
Az;0) = Zaj(x)ﬁj
j=1
a;j(x) are any linearly independent functions of .
In this case, the estimators and their variances can be found
analytically. Also, the estimators have zero bias and minimum
variance.
At x;,
m m
A(l‘i; 9) = Zaj(xi)ej = Z Az'jej
j=1 j=1
Then, in matrix notation

X =-NVy-XN
= (y — 40)" V' (y — A0)

where y = (y1,...,yn) and A = (A1, ..., An).
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Linear least-square fit

Minimizing x? w.r.t 6;,
Ax? = —2ATVly —ATv—140) =0
If ATV-1A is not singular,
6= (ATvtA)"tATV 1y = By

i.e. 6 are linear functions of the original measurements y.
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Variance of LS estimators

Using error propagation to find the covariance matrix
Uij = COU[Hi, 9]'],

U=BvBT = (ATv14)™!

Equivalently,

3 1 82X2
Ui =35 | ag98:| |
2 100;00; | |g—_p
Note: it coincides with RCF bound when y; are Gaussian
distributed.
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Variance of LS estimators

For A\(x;6) linear in 0, x? is quadratic in 6

2 20D 1 S 82X2

,j=1

(0i —0;)(0; — 0;)
9=0

Combining with expression for variance yields 1o contours in
parameter space. i.e. for 8, = 6; £ &;

X2(0) = X2 (0) + 1 = xZin + 1
Similar to the contour of constant likelihood in the ML method.

Note: If A is not linear in 6, then the contour is not in general
elliptical. So, the tangents do not correspond to one standard
deviations, but defines a region in parameter space which can be
interpreted as a confidence region.
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Example: Least squares fit of a polynomial
Consider A a polynomial of order m (i.e. m + 1 parameters)

m
AMz; 0o, ..., O) = g 2’6,

324 X¥(Pol0) = 290.44

X3(Poll) = 3.14

X2(Pol2) = 2.01 PeP
30 o pl = 0.212 £ 0.019
2.8 - (oS

. o 45
26 =
a 10
22 " == Ftepolo) (PO = 2.46) 35
—— Fit(Pol1):(p0 = 2.07, p1 = 0.21)

20 Fit(Pol2):(p0 = 2.10,p1 = 0.10,p2 = 0.03)

4 1 2 3 4 H 018 019 020 021 022 023 021

x pl

Example of fit to Oth, 1st, and 2nd order polynomials for five
measured points. x? function as a function of the parameter pl
(slope) is shown for 1st order polynomial.
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LS with binned data

Consider a binned data of n observations of z, filled into a
histogram with N bins.

If y; = number of entries in bin 7, f(x;6) is a hypothesized PDF,

then, the number of entries predicted in bin i, \; = (y;),

max
x

M) =n [ fi0)de = npi(6)

min
%

where, p;(0) is the probability to have an entry in bin i.
Then, x? function becomes

) 2
=1 ?

012 is the variance of the no. of entries in bin 3.
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LS with binned data

If (y;) = A; are small compared to the total number of entries,
then, y; are approximately Poisson distributed. i.e. variance =
mean. Thus,

N N
e Wi = Mi00)? o (i —npi(9))?
- Z Ai(0) B Z i(0)

i=1 i=1

Alternatively, one can approximate o = y; (entries actually
observed instead of predicted). In that case

=1

% i=1

So-called modified least-squares method (MLS method).
Advantage: computationally easier, Disadvantage: errors may be
poorly estimated (or x? may even be undefined) if any of the bins
contain few or no entries.



LS with binned data — Example

Consider our previous exercises of 100 measurements
Histograms with a bin width of At = 0.25 along with the results
of the LS fit.

— data -t
—— LS Fit:(n = 105.33, tau = 1.00) —— LS Fit:(n=107.32,5=4.81,0=1.93)

N(©)/0.25

Good agreements with ML fit results.
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Testing goodness-of-fit

(yi — M(x;;6))/0; is a measure of the deviation between y; and the
function A(x;;6) = x? is a measure of total agreement between
observed data and hypothesis.

If,

1. y; (¢ = 1 to N) are independent Gaussian r.v. with known
variances (or N-d Gaussian with known cov. matrix ),

2. the hypothesis A is linear in §; (j = 1 to m),
3. the functional form of the hypothesis is correct,

then, X%”-n is distributed according the x? distribution with N —m
d.o.f.
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Testing goodness-of-fit

We know (z) = ng for x? distribution.
Thus, x?/ng is a measure of the g.o.f.
If

» x?/nq is similar to 1: Fit is
good.

» x2/ng is much less than 1:
Fit is too good. Should
check whether errors are
overestimated or correlated.

» x2/ng is much larger than
1: Decide whether the
hypothesis can be rejected

based on the P-value.

P = /X:O f(z;ng)dz
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END
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