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INTRODUCTION  

 The properties of the bulk material used for the fabrication of transistors 

and other semiconductor devices are essential in determining the characteristics of the 

completed devices. Resistivity and lifetime (of minority carriers) measurements are 

generally made on germanium crystals to determine their suitability. The resistivity, in 

particular, must be measured accurately since its value is critical in many devices. The 

value of some transistor parameters, like the equivalent base resistance, are at least 

linearly related to the resistivity. 

ELECTRONIC CONDUCTION IN SOLIDS  

 The electrical properties of semiconductors involve the motion of charged 

particles within them. Therefore, we must have an understanding of the forces which 

control the motion of these particles. It is of course, the physical structure of the solid 

which exerts their control. This topic is very large, and hence only the high lights will be 

covered. The reader is referred to many excellent sources which are listed at the end, for 

more details on specific aspects. 

 Atoms, of which a solid is composed, consist of positively charged nuclei 

with electron orbiting around them. The positive charge is compensated by negatively 

charged electrons, so that a complete atom is electrically neutral. Electrons are arranged 

in shells, and the closer they are to the nucleus the more strongly they are bound. If we 

take the particular case of silicon, a well known semiconductor, we find that it has 14 

electrons which are accommodated in the shells as (1S)2, (2S)2, (2P)6, (3S)2, (3P)2. 

Since the third shell is not even half filled, the 4 electrons are available for chemical 

binding giving silicon a valency of four. (Germanium also has a chemical valency of 4, but 

from the fourth shell). Fig. 1 shows an energy diagram of an individual atom.  

  Let us now concentrate our attention on solids, if we bring many atoms 

close to one another, interatomic forces become quite strong as electronic orbits begin to 

overlap. The outer shell electrons play an important role, because their orbits are the 

most disturbed. These electrons are no longer associated with a particular atom, the 

outer shell electron may make an orbit around one atom and continue about another. In 

this fashion, the outer shell or valency electrons are continually traded among atoms and 

wander all over the solid. The continuous interchange of valence electrons between 

atoms holds the solid together. This is the predominant type of bonding in silicon and 

germanium, and is called the valence bonding. 





 

 

 In solids, atoms are usually arranged in a regular way to achieve a dense packing 

and thereby form a crystal. The arrangement has very desirable characteristics, i.e. the 

transport of holes and free electrons is very smooth in these structures. When the 

arrangement is not crystalline complication arise. Here we will be concerned only with the 

properties of perfect crystals. Silicon and germanium (and carbon) crystallize with an 

identical crystal structure, the called diamond structure. Such a structure is shown in fig. 

 2 The arrangement of atoms in the illustration form a Unit Cell, and the crystal is 

made up of adjacent unit cells. 

 Fig. 3 shows a potential diagram of an array of atoms. An actual crystal is 

of course there dimensional. The most important difference between the potential plot of 

an isolated atom and one dimensional array is the splitting of energy levels. In fact, 

bringing N atoms together we find 'N' times as many levels throughout the crystal. The 

spreading of energy level depends on the degree of interaction, therefore, the inner orbits 

split into levels combined in a narrow energy than the outer ones. 

 As a result of the interaction between the tremendous number of atoms in 

crystal (1022 per cm3), the energy level found in isolated atoms will be split and form 

bands of allowed energies which contain almost continuum of levels. Accordingly, 

electrons are located in energy bands in crystalline solid. The band which contains the 

valence electrons is called the valence band. The unoccupied energy levels also split up 

and form another band called the conduction band. The interaction between the unused 

shells is very large and they spread widely. Therefore, while there is a bandgap, Eg (or 

forbidden region) between the valence and conduction bands, splitting of higher orbit is 

so wide that they usually overlap. 

 The bands below the energy gap Eg are completely filled at absolute zero 

temperature and the conduction band is empty. This is a very important point and has 

direct consequences on the conduction properties, as we shall see soon. The 

fundamental theory is that current conduction is not possible in empty and filled bands. 

The reasons about the empty band is obvious since current is not possible without 

carriers. The reason about the filled band is as follows : though the valence electrons 

move about the crystal but they can not be accelerated because the acceleration means 

gain of energy and there are no higher energy levels available to which they could rise. 

 We can now readily see that the crystal band structure shown in Fig. 3 

does not allow current conduction at T=0. If we increase the temperature, however, 

thermal agitation increases and some valence electron will gain energy greater than Eg 

and jump into the conduction band. The electron in the conduction band is called a free 

electron, and its former place in the valence band is called a hole. Electrons in 



 

 

conduction band can gain energy when a field is applied, because there are many higher 

energy states available. The fact that electrons left the valence band leaves some empty 

energy levels, this allows conduction in the valence band as well. Electrons can now gain 

energy in the valence band also, and we observe a motion of holes in the direction of the 

field. Because of this we begin to speak of a hole as a current carrying particles.  

 According to the proceeding theory, an insulator must have a large 

bandgap, so that at room temperature the conduction band is practically empty and the 

valence band is practically filled and a semiconductors must have a narrower band gaps 

so that appreciable number of carriers are present in the valence and conduction bands 

at room temperature. 

  In metals, however, the valence and conduction bands overlap and 

application of an electric field can, therefore, accelerate a great sea of electrons. The 

non-existance of a bandgap make conduction in metal almost independent of 

temperature, as compared to semiconductors. Fig. 4 summarizes the above points. 

 The fact that electrons can be found in energy bands within a crystal and 

other conclusions mentioned so far can be shown by quantum mechanical calculations 

also which we shall not carry out  here, but will use the results for quantitative analysis. 

 

CONCENTRATION OF INTRINSIC CARRIERS  

 The concentration of intrinsic carriers i.e. the number of electrons in 

conduction band per unit volume is given by the expression :* 
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and the concentration of holes in valence band is given by the expressions*  
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  If we multiply together the expression for n and p to obtain equilibrium 

relation : 
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 This does not involve the Fermi level µ and is known as the expression of 

law of mass action. 

Where  me  =  Effective mass of an electron 

        mh  =  Effective mass of a hole 

        k    =  Boltzamann's constant,  µ = Fermi level 

        Eg  =  Bandgap,                  T = Temperature in K 

 In case of intrinsic (highly purified) crystals, the number of electrons is 

equal to the number of holes, because the thermal excitation of an electron leave behind 

a hole in the valence band. Thus, from(3) we have, letting the subscript i denote intrinsic 
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 Thus, we see that the concentration of intrinsic carrier depend 

exponentially on Eg/2kT. 

CONDUCTIVITY OF INTRINSIC SEMICONDUCTOR  

 The electrical conductivity will be the sum of the contributions of both 

electrons and holes : 

       σ = (ni e µe + pi e µh)      (5) 

 Where e is the electron charge. µe and µh are the average velocities 

acquired by the electrons and holes in a unit electric field and known as mobilities. 

 or σ = e ni (µn + µh) Since  ni = pi 

          =  (K) T3/2 (µn + µp). exp 
-E

2kT

g
     (6) 

using Eq. 4 where K is a constant. 

 The factor T3/2 and the mobilities change relatively slow with temperature 

compared with the exponential term, and hence the logarithm of resistivity ρ (=1/σ) varies 

linearly with 1/T. The width of the energy gap may be determined from the slope of the 

curve



 Thus we have, 
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EXPERIMENTAL CONSIDERATIONS  

1. High resistance or rectification appears fairly often in electrical contacts to 

semiconductors and in fact is one of the major problem. 

2. In single crystal material the resistivity may vary smoothly from point to point. In fact 

this is generally the case. The question is the amount of this variation rather than 

any question of its presence. Often, however, it is conventionally stated that the 

resistivity is constant within some percentage and when the variation does in fact fall 

within this tolerance, it is ignored. 

3. Soldered probe contacts may disturb the current flow shorting out part of the sample 

and add to the ambiguity in the measurement of the probe spacing. Soldering 

directly to the body of the sample can affect the sample properties by heating effect 

and by contamination unless care is taken. These problems can be avoided by using 

pressure contacts. The principal draw backs of this kind of contacts are that they 

may be noisy. 

4. The current through the sample should not be large enough to cause heating. A 

further precaution is necessary to prevent  'injecting effect' from affecting the 

measured value of ρ Even good contacts, to germanium, for example, may inject. 

This is minimized by keeping the voltage drop at the contacts low. If the surface 

near the current contacts is rough (lapped surface) and the electric flow in the 

crystal is low, these injected carriers will recombine before reaching the measuring 

probes. 

 Since ρ is independent of current, it is possible to determine whether or not 

any of these effects are interfering with the measuring of ρ at several values of I. It 

should be kept in mind that these points of experimental technique affect essentially 

all the measurements and not the resistivity measurements only. 

FOUR PROBE METHOD  

 Many conventional methods for measuring resistivity are unsatisfactory for 

semiconductors because metal-semiconductor contacts are usually rectifying in nature. 

Also there is generally minority carrier injection by one of the current carrying contacts. 



 



 

 

An excess concentration of minority carriers will affect the potential of other contacts and 

modulate the resistance of the material. 

 The method described here overcomes the difficulties mentioned above 

and also offers several other advantages. It permits measurements of resistivity in 

samples having a wide variety of shapes, including the resistivity of small volumes within 

bigger pieces of semiconductor. In this manner the resistivity of both sides of p-n junction 

can be determined with good accuracy before the material is cut into bars for making 

devices. This method of measurement is also applicable to silicon and other 

semiconductor materials. 

 The basic model for all these measurements is indicated in Fig. 5. Four 

sharp probes are placed on a flat surface of the material to be measured, current is 

passed through the two outer electrodes, and the floating potential is measured across 

the inner pair. If the flat surface on which the probes rest is adequately large and the 

crystal is big the semiconductor may be considered to be a semi-infinite volume. To  

prevent minority carrier injection and make good contacts, the surface on which the 

probes rest, maybe mechanically lapped. 

 The experimental circuit used for measurement is illustrated schematically 

in Fig. 6. A nominal value of probe spacing which has been found satisfactory is an equal 

distance of 2.0 mm between adjacent probes. This permit measurement with reasonable 

current of n-type or p-type semiconductor from 0.001 to 50 ohm. cm. 

 In order to use this four probe method in semiconductor crystals or slides it 

is necessary to assume that : 

1. The resistivity of the material is uniform in the area of measurement. 

2. If there is minority carrier injection into the semiconductor by the current - carrying 

electrodes most of the carriers recombine near the electrodes so that their effect on 

the conductivity is negligible. (This means that the measurements should be made 

on surface which have a high recombination rate, such as mechanical lapped 

surfaces). 

3. The surface on which the probes rest is flat with no surface leakage. 

4. The four probes used for resistivity measurements contact the surface at points that 

lie in a straight line. 

5. The diameter of the contact between the metallic probes and the semiconductor 

should be small compared to the distance between probes. 



 

 

6. The boundary between the current-carrying electrodes and the bulk material is 

hemispherical and small in diameter. 

7. The surfaces of the semiconductor crystal may be either conducting or non-

conducting. 

(a) A conducting boundary is one on which a material of much lower resistivity than 

semiconductor (such as copper) has been plated. 

(b) A non-conducting boundary is produced when the surface of the crystal is in 

contact with an insulator. 

CASE 1 -  RESISTIVITY MEASUREMENTS ON A LARGE SAMPLE 

 One added boundary condition is required to treat this case namely, that 

the probes are far from any of the other surfaces of the sample and the sample can thus 

be considered a semi-infinite volume of uniform resistivity material. Fig. 5 shows the 

geometry of this case. Four probes are  spaced S1, S2 and S3 apart. Current I is passed 

through the outer probes (1 and 4) and the floating potential V is measured across the 

inner pair of probes 2 and 3. 

 The floating potential Vf a distance r from an electrode carrying a current I 

in a material of resistivity ρ0 is given by  

  V
 I

2  r
f =

ρ

π

0  

 In the model shown in Fig. 5 there are two current-carrying electrodes, 

numbered 1 and 4, and the floating potential Vf, at any Y point in the semiconductor is 

the difference between the potential induced by each of the electrodes, since they carry 

currents of equal magnitude but in opposite directions Thus : 
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 Where r1 = distance from probe number 1. 

       r4 = distance from probe number 4. 

 The floating potentials at probe 2, Vf2, and at probe 3, Vf3 can be 

calculated from (9) by substituting the proper distances as follows :
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 The potential difference V between probes 2 and 3 is then  
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and the resistivity ρ0 is computable as  
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When the point spacing equal, that is, S1 = S2 = S3 = S  the above simplifies to :

 ρ π0 2= ×
V

I
S         (11) 

CASE 2- RESISTIVITY MEASUREMENTS ON A THIN SLICE-CONDUCTING 

BOTTOM SURFACE. 

 Two boundary conditions must be met in this case; the top surface of the 

slice must be a reflecting (non-conducting) surface and the bottom surface must be an 

absorbing (conducting) surface. Since the two boundaries are parallel, a solution by the 

method of images required for each current source an infinite series of images along a 

line normal to the places and passing through the current source. 

 The model for this case is shown in Fig. 7. The side surface of the slice are 

assumed to be far from the area of measurement and, therefore, only the effect of the 

bottom surface needs to be considered. In this analysis equal probe spacing S shall be 

assumed. The width of the slice is W. The array of images needed is indicated in Fig. 7. 

where the polarity and spacing of the first few images are as shown. 

 The floating potential Vf2 at electrodes 2 is  
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Likewise, the floating potential at electrode (3) can be obtained and  
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The resistivity then becomes 
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Where resistivity ρ0 is computable from (10, and 11) can be  used if the point 

spacing are different, but approximately equal. The function G6 (W/S) is computed from  
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which is tabulated in Table I and plotted in Fig. 8. 

TABLE I 

S. No. W/S G6 (W/S) G7 (W/S) 

1 0.100 0.0000019 13.863 

2 0.141 0.00018 9.704 

3 0.200 0.00342 6.931 

4 0.33 0.0604 4.159 

5 0.500 0.228 2.780 

6 1.000 0.683 1.504 

7 1.414 0.848 1.223 

8 2.000 0.933 1.094 

9 3.333 0.9838 1.0228 

10 5.000 0.9948 1.0070 

11 10.000 0.9993 1.00045 



 

 

 

 



 

 

 

CASE 3 RESISTIVITY MEASUREMENTS ON A THIN SLICE-NON-CONDUCTING 

BOTTOM SURFACE. 

     The model for these measurements is like the case 2, except that the bottom 

surface of the slice is nonconducting. This means that all the images of Fig. 7 have the 

same charge as the current source. Thus all the images on a row have equal charges 

and Eq. 13 describes the potential difference across the inner pair of probes, if (-1)n is 

removed from the equation. Then,  
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This function G7(W/S) is tabulated in Table I. and plotted in Fig. 9. For smaller 

values of W/S the function G7 (W/S) approaches the case for an infinitely thin slice, or  
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BRIEF DESCRIPTION OF THE APPARATUS REQUIRED 

1. Probes Arrangement : It has four individually spring loaded probes, coated with Zn 

at the tips. The probes are colinear and equally spaced. The Zn coating & individual 

spring ensure good electrical contacts with the sample. The probes are mounted in a 

teflon bush which ensure a good electrical insulation between the probe. A teflon 

spacer near the tips is also provided to keep the probes at equal distance. The whole 

arrangement is mounted on a suitable stand and leads are provided for current and 

voltage measurements.  

2. Sample : Ge or Si crystal in the form of a chip/slice 

3. Oven : It is a small oven for the variation of temperature of the crystal from room 

temperature to about 200 °C. 



 

 

4. Four Probes Set-up : (Measuring Unit) - It has three subunits all enclosed in one 

cabinet.  

(i) Multirange Digital Voltmeter  

     In this unit intersil 3½ digit single chip A/D converter ICL 7107 has been used. It 

has high accuracy, auto zero to less than 10 µV, zero drift-less than 1 µV/°C, input 

bias current of 10 pA and roll over error of less than one count. Since the use of 

internal reference causes the degradation in performance due to internal heating, 

an external reference has been used. 

 

SPECIFICATION 

Range :  X 1 (0 - 200.0 mV) & X 10 (0 - 2.000 V) 

Resolution :  100 µV at X 1 range 

Accuracy :  ± 0.1% of reading  ± 1 digit 

Impedance : 10 M ohm  

Display :  3½ digit, 7 segment, LED (12.5 mm height) with auto polarity and decimal indication. 

Overload Indicator :  Sign of 1 on the left and blanking of other digits. 

 

(ii) Constant Current Generator 

     It is a IC regulated current generator to provide a constant current to the 

outer probes irrespective of the changing resistance of the sample due to change in 

temperatures. 

     The basic scheme is to use the feedback principle to limit the load current 

of the supply to preset maximum value. Variations in the current are achieved by a 

potentiometer included for that purpose. The supply is a highly regulated and 

practically ripple free d.c. source. The current is measured by the digital panel meter.  

SPECIFICATION  

Open circuit voltage : 18 V 

Current range :  0 - 20 mA 

Resolution :  10 µA 

Accuracy :  ± 0.25% of the reading ±1 digit 

Load regulation :  0.03% for 0 to full load 

Line regulation :  0.05% for 10% changes 



 

 

(iii) Oven Power Supply 

     Suitable voltage for the oven is obtained through a step down transformer 

with a provision for low and high rates of heating. A glowing LED indicates, when the 

oven power supply is 'ON'. 

EXPERIMENTAL PROCEDURES 

1. Put the sample on the base plate of the four probe arrangement. Unscrew the pipe 

holding the four probes and let the four probes rest in the middle of the sample. Apply 

a very gentle pressure on the probes and tighten the pipe in this position. Check the 

continuity between the probes for proper electrical contacts. 

CAUTION :  The Ge crystal is very brittle. Therefore, use only the minimum pressure 

required for proper electrical contacts. 

2. Connect the outer pair of probes (red/black) leads to the constant current power 

supply and the inner pair (yellow/green leads) to the probe voltage terminals. 

3. Place the four probe arrangement in the oven and fix the thermometer in the oven 

through the hole provided. 

4. Switch on the ac mains of Four Probe Set-up and put the digital panel meter in the 

current measuring mode through the selector switch. In this position LED facing mA 

would glow. Adjust the current to a desired value (Say 5 mA).  

5. Now put the digital panel meter in voltage measuring mode. In this position LED 

facing mV would glow and the meter would read the voltage between the probes. 

6. Connect the oven power supply. Rate of heating may be selected with the help of a 

switch - Low or High as desired. Switch on the power to the Oven. The glowing LED  

indicates the power to the oven is 'ON'. 

 

 

 

 

 

 



 

 

OBSERVATION & TABULATION  

     Current (I) =          mA (Constant) 

S

.No. 

Tempe

rature(°°°°C) 

V

oltage 

(volts) 

Tempe

rature (T in 

K) 

ρρρρ        

(ohm. cm.) 

T-1 

x 103 

L

og10 ρρρρ 

       

       

       

       

       

     Distance between probes (S) =          mm 

     Thickness of the crystal (W) =          mm  

CALCULATION  

     From Eq. (11) 

       ρ0 = 
V

I
x 2πS  

     Since the thickness of the crystal is small compared to the probe distance a 

correction factor for it has to be applied. Further the bottom surface is non-conducting in 

the present case, Eq. (17) will be applied. 

  ρ
ρ

=
G W / S)

0

7 (
 

     The function G7 (W/S) may be obtained from Table-I or Fig. 9 for the 

appropriate value of (W/S). Thus ρ may be calculated for various temperature. 

Plot a graph for  Log10ρ   vs.   T-1 X 10-3 

Using Eq. (7)  Logeρ = 
E

2kT
K

g
e− log  



 

 

the slope of the curve is given by 
log

1

T

E

2k
e gρ

=      (19) 

Thus Eg may be obtained from the slope of the graph. Note that loge = 2.3026 

log10 and the Eq. (7) is applicable only in the intrinsic region of the semiconductor. A 

typical graph is shown in Fig. 10. 

QUESTIONS 

1. What is the advantage of Four Probe method over the other conventional methods. 

2. Can we use an ordinary millivoltmeter instead of electronic millivoltmeter or 

potentiometer to measure the inner probe voltage. why? 

3. Explain the behaviour of the log10ρ  vs. 1/T curve. 

4. Why a semiconductor behaves as an insulator at zero degree kelvin. 
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