Is ψ -Epistemic Theory at Stake?

Guruprasad Kar Indian Statistical Institute Kolkata

Brief Description of QM

State $\Rightarrow |\psi\rangle$ (Unit vector in H)

Observable: A (Hermitain operator on H)

$$A = \sum a_i |\phi_i\rangle\langle\phi_i| = \sum a_i P_i, \quad \sum P_i = I$$

(1) Measurement result is one of the Eigen values.

- (2) $p(a_i|\psi) = \langle \psi | P_i | \psi \rangle = |\langle \psi | \phi_i \rangle|^2$ (Born probability)
- (3) $|\psi\rangle \rightarrow |\phi_i\rangle$ (Measurement collapse)

Copenhagen Interpretation and Einstein

Bhor' statement:

It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we say about nature.

Pauli's statement:

Observations not only disturb what has to be measured, they produce it We compel (the electron) to take a definite position. ... We ourselves produce the result of measurement.

Question of reality independent of measurement is denied. ψ only represents pattern of the results for some future measurements.

Einstein:

The fact suggests that Einstein....., but one wherein quantum states are solely representative of our knowledge. (Harrigan & Spekkens, 2010)

Two Pictures:

Measurement creates the result for σ_x .

50% down(-1)

50% up (+1)

Individual particle has definite value for both σ_x and σ_z .

$$\begin{aligned}
\sigma_z &= 1 & \sigma_z &= 1 & \sigma_z &= 1 \\
\sigma_x &= 1 & \sigma_x &= -1 & \sigma_x &= -1
\end{aligned}$$

$$\sigma_z &= 1 & \sigma_z &= 1 & \sigma_z &= 1 \\
\sigma_z &= 1 & \sigma_z &= 1 & \sigma_z &= 1 \\
\sigma_x &= 1 & \sigma_x &= -1 & \sigma_x &= 1$$

Measurement reveals the pre-existing value of σ_x .

Uncertainty and measurement incompatibility cannot discard the 2nd picture.

Formal HVT Model

 $(\psi$ -supplemented)

Quantum ensemble

Scenario in HVT

 (ψ, λ) decides the values of all observables.

$$v_{\psi,\lambda}(A) = one of the Eigen value of A$$

To be compatible with QM:

$$\int v_{\psi,\lambda}(A)\mu_{\psi}(\lambda)d\lambda = \langle A\rangle_{\psi} \iff \int v_{\psi,\lambda}(P_i)\mu_{\psi}(\lambda)d\lambda = \langle \psi|P_i|\psi\rangle$$

where
$$\mu_{\psi}(\lambda) \geq 0$$
, $\int \mu_{\psi}(\lambda) d\lambda = 1$

ψ -Epistemic Model

(Quantum state is not part o reality)

Quantum ensemble

Scenario in HVT

$$\lambda_{13}$$
 λ_{15} λ_{5} λ_{1} λ_{6}
 λ_{1} λ_{7} λ_{5} λ_{2} λ_{8}
 λ_{1} λ_{11} λ_{3} λ_{1} λ_{10}
...

 λ decides the values of all observables.

$$\overline{v_{\lambda}(A)}$$
 = one of the Eigen value of \overline{A}

To be compatible with QM:

$$\int v_{\lambda}(A)\mu_{\psi}(\lambda)d\lambda = \langle A\rangle_{\psi} \iff \int v_{\lambda}(P_{i})\mu_{\psi}(\lambda)d\lambda = \langle \psi|P_{i}|\psi\rangle$$

where
$$\mu_{\psi}(\lambda) \geq 0$$
, $\int \mu_{\psi}(\lambda) d\lambda = 1$

It's not just flawed, it's silly!

Von Neumann claimed 'No' to the possibility of dispersion free description:

$$A + B = C$$

Condition imposed by Von Neumann:

$$\langle A \rangle_S + \langle B \rangle_S = \langle C \rangle_S$$

S being the state of the theory.

Eigen value of A + Eigen value of B = Eigen value of C

Verifiable relation:

$$\langle \psi | A | \psi \rangle + \langle \psi | B | \psi \rangle = \langle \psi | C | \psi \rangle$$

$$\int v_{\lambda}(A) \mu_{\psi}(\lambda) d\lambda + \int v_{\lambda}(B) \mu_{\psi}(\lambda) d\lambda - \int v_{\lambda}(C) \mu_{\psi}(\lambda) d\lambda = 0$$

$$\int [v_{\lambda}(A) + v_{\lambda}(B) - v_{\lambda}(C)] \mu_{\psi}(\lambda) d\lambda = 0$$

 $v_{\lambda}(A) + v_{\lambda}(B) - v_{\lambda}(C) = 0$ may be a sufficient condion for the above but hardly a necessary condition.

Statistics for spin measurement

Every qubit state is eigen state of some spin observable $n.\sigma$.

Let $|\psi\rangle$ is up eigen state of $n.\sigma$.

$$|\psi\rangle\langle\psi|=\frac{1}{2}[I+n.\sigma],\ |n|=1$$

Then for spin measurement along vector m:

$$p(+1|\psi) = \frac{1}{2}(1+n.m)$$

$$p(-1|\psi) = \frac{1}{2}(1-n.m)$$
(Born rule)

$$\langle \psi | m. \sigma | \psi \rangle = n. m$$

Bell Model for qubit (A different version)

Completed state: $(\psi, \lambda) \equiv (n, \lambda)$

 $\lambda \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ and distribution is uniform.

Definite value for completed state:

$$v_{n,\lambda}[m.\sigma] = Sign(\lambda + \frac{1}{2}|n.m|Sign(n.m))$$

$$Sign(x) = 1$$
 when $x \ge 0$ and $Sign(x) = -1$ when $x < 0$

Let (n.m) is negetive

$$\langle m. \sigma \rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} \rho(\lambda) v_{n,\lambda}[m. \sigma] d\lambda = \int_{-\frac{1}{2}}^{\frac{1}{2}} Sign(\lambda + \frac{1}{2} |n. m| Sign(n. m))] d\lambda$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}|n.m|} (-1) d\lambda + \int_{\frac{1}{2}|n.m|}^{\frac{1}{2}} (+1) d\lambda = -\frac{1}{2} [1 + |n.m|] + \frac{1}{2} [1 - |n.m|] = n.m$$

K-S Model (ψ -Epistemic)

 λ (Unit vector in Bloch sphere) is state of individual particle.

$$\psi\left(=\frac{1}{2}(1+\sigma.n)\right)$$

$$\rho_{\Psi}(\lambda) = \frac{1}{\pi} \Theta(n, \lambda)(n, \lambda)$$

$$\Theta(x) = 1 for x > 0$$

= 0 for x \le 0

Probability for up result along direction m is given by

$$p_{\lambda}(\mathsf{up}) = \Theta(m.\lambda)$$

$$p(\mathsf{up}|\psi) = \frac{1}{\pi} \int d\lambda \; \Theta(m.\lambda) \; \Theta(n.\lambda)(n.\lambda) = \frac{1}{2}(1+m.n)$$

Some Intresting Features of ψ - Epistemic Model

For two different quantum states ψ and ϕ there are common ontic states.

$$p(\lambda|\psi)p(\lambda|\varphi) = \frac{1}{\pi^2} \; \varTheta(m.\lambda) \; \varTheta(n.\lambda)(n.\lambda)(m.\lambda)$$
 is non-zero for nonorthogonal ψ and φ .

- * This can explain why non-orthogonal quantum states can not be reliably distinguished.
- * This picure can also provide a solution to the notorious collapse postulate by giving the post-measurement state as a updating of probabilities.

Gleason's Theorem

The set of all projection operators P(H).

 μ is a probability measure on P(H) .

- 1) $0 \leq \mu(P) \leq 1$
- **2)** $\mu(I) = 1$
- 3) $\mu(\sum P_i) = \sum \mu(P_i)$ where P_i are orthogonal projectors.

If $Dim(H) \ge 3$, then there exists a density operator ρ , such that

$$\mu(P) = Tr[\rho P]$$

So measurement contextuality was discovered in 1957 itself though it was not appreciated before Bell put the question with glaring clarity during 1964 to 1966.

HVT in higher dimensional Hilbert space

$$\sum_{i=1}^{3} P_i = I \quad \text{where} \quad P_i = |\phi_i\rangle\langle\phi_i|$$

 $\{|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle\}$ being an orthogonal basis B_1 .

Another projective measurement: $P_1 + Q_2 + Q_3 = I$

$$Q_2$$
: Projector on $\frac{1}{\sqrt{2}}(|\phi_2\rangle+|\phi_3\rangle)$ Q_3 : Projector on $\frac{1}{\sqrt{2}}(|\phi_2\rangle-|\phi_3\rangle)$

$$\{|\phi_1\rangle, \frac{1}{\sqrt{2}}(|\phi_2\rangle+|\phi_3\rangle), \ \frac{1}{\sqrt{2}}(|\phi_2\rangle-|\phi_3\rangle)\}$$
 being an orthogonal basis B_2

Measurements in B_1 and B_2 are different.

A HVT is called non-contextual if it assigns value to observables in a context independent way i.e. independent of other observables along with which it is measured.

In this case non-contextuality implies,

$$v_{B_1}(P_1) = v_{B_2}(P_1)$$

Now if there is non-contextual HVT, the probability measure on projectrs has to satisfy the following conditions;

1.
$$\mu(P) = Tr[\rho P]$$
 (Gleason's theorem)

2. $\mu(P) = 1 \text{ or } 0$

for all projection operators P.

 $Tr[\rho P]$ does not depend on the context in which P appears hence non-contextual.

But P being a density matrix, there is always a projector Q such that

$$Tr[\rho Q] \neq 1,0$$

Various versions of Kochen-Specker theorem prove the same with finite no. of projectors.

Impossibility of Non-contextual HVT

18 Vectors in 4-dimension:

$$\begin{array}{lllll} \varphi_1 &= (0,0,0,1) & \varphi_2 &= (0,0,1,0) & \varphi_3 &= (1,1,0,0) \\ \varphi_4 &= (1,-1,0,0) & \varphi_5 &= (0,1,0,0) & \varphi_6 &= (1,01,0) \\ \varphi_7 &= (1,0,-1,0) & \varphi_8 &= (1,-1,1,-1) & \varphi_9 &= (0,0,1,1) \\ \varphi_{10} &= (1,1,1,1) & \varphi_{11} &= (0,1,0,-1) & \varphi_{12} &= (1,0,0,1) \\ \varphi_{13} &= (1,0,0,-1) & \varphi_{14} &= (0,1,-1,0) & \varphi_{15} &= (1,1,-1,1) \\ \varphi_{16} &= (1,1,1,-1) & \varphi_{17} &= (-1,1,1,1) & \varphi_{18} &= (1,-1,-1,1) \end{array}$$

Rules of Value Assignment:

1)
$$v(\phi_i) \equiv v(|\phi_i\rangle\langle\phi_i|) = 0,1$$

2) $\sum v(\phi_i) = 1, \{|\phi_i\rangle\}$ form an orthogonal basis.

$$v(\varphi_{1}) + v(\varphi_{2}) + v(\varphi_{3}) + v(\varphi_{4}) = 1$$

$$v(\varphi_{1}) + v(\varphi_{5}) + v(\varphi_{6}) + v(\varphi_{7}) = 1$$

$$v(\varphi_{8}) + v(\varphi_{18}) + v(\varphi_{3}) + v(\varphi_{9}) = 1$$

$$v(\varphi_{3}) + v(\varphi_{10}) + v(\varphi_{7}) + v(\varphi_{11}) = 1$$

$$v(\varphi_{2}) + v(\varphi_{5}) + v(\varphi_{12}) + v(\varphi_{13}) = 1$$

$$v(\varphi_{18}) + v(\varphi_{10}) + v(\varphi_{13}) + v(\varphi_{14}) = 1$$

$$v(\varphi_{15}) + v(\varphi_{16}) + v(\varphi_{4}) + v(\varphi_{9}) = 1$$

$$v(\varphi_{15}) + v(\varphi_{17}) + v(\varphi_{6}) + v(\varphi_{11}) = 1$$

$$v(\varphi_{16}) + v(\varphi_{17}) + v(\varphi_{12}) + v(\varphi_{14}) = 1$$

If added, the L.H.S. is even as every vector has appeared twice and the R.H.S. is odd.

It shows that non-contextual HVT, in general can not reproduce quantum mechanics.

ψ - Epistemic theory makes life simple

 $|\phi\rangle$ and $|\omega\rangle$ are non-orthogonal. There my exist λ such that

$$\theta_{\psi}(\lambda) \neq 0$$
 and $\theta_{\omega}(\lambda) \neq 0$

We consider such HVT state λ and observe the following

For this HVT state , $v_{\lambda}(P_{\psi})=1$ and $v_{\lambda}(P_{\varphi})=1$

(Leifer & Spekkens, 2005, PRL)

Preparation Contextuality of qubit

(Spekkens, PRA, 2005)

Various decomposition of ρ_n

$$\rho_n = \frac{1-q}{2} |\phi_n^{\perp}\rangle \langle \phi_n^{\perp}| + \frac{1+q}{2} |\phi_n\rangle \langle \phi_n| \quad a^{\perp}$$

$$\rho_n = \frac{1-q}{2} (|\psi_a\rangle\langle\psi_a| + |\psi_a^{\perp}\rangle\langle\psi_a^{\perp}|) + q|\phi_n\rangle\langle\phi_n|$$

$$\rho_n = \frac{1-q}{2} (|\psi_b\rangle\langle\psi_b| + |\psi_b^{\perp}\rangle\langle\psi_b^{\perp}|) + q|\phi_n\rangle\langle\phi_n|$$

$$\rho_n = \frac{1 - q}{2} (|\psi_c\rangle\langle\psi_c| + |\psi_c^{\perp}\rangle\langle\psi_c^{\perp}|) + q|\phi_n\rangle\langle\phi_n|$$

$$\rho_n = \frac{1 - q}{3} (|\psi_a\rangle\langle\psi_a| + |\psi_b\rangle\langle\psi_b| + |\psi_c\rangle\langle\psi_c|) + q|\phi_n\rangle\langle\phi_n|$$

$$\rho_n = \frac{1-q}{3} (|\psi_a^{\perp}\rangle\langle\psi_a^{\perp}| + |\psi_b^{\perp}\rangle\langle\psi_b^{\perp}| + |\psi_c^{\perp}\rangle\langle\psi_c^{\perp}|) + q|\phi_n\rangle\langle\phi_n|.$$

Preparation non-contextuality implies:

$$\begin{split} \mu(\lambda|\rho_n) &= \frac{1-q}{2} \mu(\lambda|\phi_n^{\perp}) + \frac{1+q}{2} \mu(\lambda|\phi_n) \\ &= \frac{1-q}{2} [\mu(\lambda|\psi_a) + \mu(\lambda|\psi_a^{\perp})] + q\mu(\lambda|\phi_n) \\ &= \frac{1-q}{2} [\mu(\lambda|\psi_b) + \mu(\lambda|\psi_b^{\perp})] + q\mu(\lambda|\phi_n) \\ &= \frac{1-q}{2} [\mu(\lambda|\psi_c) + \mu(\lambda|\psi_c^{\perp})] + q\mu(\lambda|\phi_n) \end{split}$$

Orthogonality implies:

$$\mu(\lambda|\phi_n)\mu(\lambda|\phi_n^{\perp}) = 0$$

$$\mu(\lambda|\psi_a)\mu(\lambda|\psi_a^{\perp}) = 0$$

$$\mu(\lambda|\psi_b)\mu(\lambda|\psi_b^{\perp}) = 0$$

$$\mu(\lambda|\psi_c)\mu(\lambda|\psi_c^{\perp}) = 0$$

$$= \frac{1-q}{3} \left[\mu(\lambda|\psi_a) + \mu(\lambda|\psi_b) + \mu(\lambda|\psi_c)\right] + q\mu(\lambda|\phi_n)$$

$$= \frac{1-q}{3} \left[\mu(\lambda|\psi_a^{\perp}) + \mu(\lambda|\psi_b^{\perp}) + \mu(\lambda|\psi_c^{\perp})\right] + q\mu(\lambda|\phi_n)$$

All these equations imply:

$$\mu_{\phi_n}(\lambda) = \mu_{\phi_n^{\perp}}(\lambda) = \mu_{\phi_a}(\lambda) = \mu_{\phi_a^{\perp}}(\lambda) = \mu_{\phi_b}(\lambda) = \mu_{\phi_b^{\perp}}(\lambda)$$
$$= \mu_{\phi_a}(\lambda) = \mu_{\phi_a^{\perp}}(\lambda) = 0$$

(Spekkens, Phys.Rev.A, 2005 & M.Banik et al, Found. Phys., 2014)

Bolt from the blue (PBR-Result)

Consider the following states:

$$|0\rangle$$
 and $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

In ψ – Epistemic picture:

So it is expected that when the ontic state λ comes from the red portion, one will not be able to distinguish the quantum states.

Possible Quantum states:

$$|0\rangle_A \otimes |0\rangle_B, |+\rangle_A \otimes |0\rangle_B, |0\rangle_A \otimes |+\rangle_B, |+\rangle_A \otimes |+\rangle_B$$

$In \psi - Epistemic picture$:

Possible Ontic state:

24

Measure

Argument based on ψ – *Epistemic* model would say that in such cases, measurement should not be able even to discard any one of the four states.

Measurement basis	State	Prob. of occurrence
$\frac{1}{\sqrt{2}}[0\rangle \otimes 1\rangle + 1\rangle \otimes 0\rangle]$	$ 0\rangle_A\otimes 0\rangle_B$	0
$\frac{1}{\sqrt{2}}[0\rangle \otimes -\rangle + 1\rangle \otimes +\rangle]$	$ 0\rangle_A \otimes +\rangle_B$	0
$\frac{1}{\sqrt{2}}[+\rangle \otimes 1\rangle + -\rangle \otimes 0\rangle]$	$ +\rangle_A \otimes 0\rangle_B$	0
$\frac{1}{\sqrt{2}}[+\rangle \otimes -\rangle + -\rangle \otimes +\rangle]$	$ +\rangle_A \otimes +\rangle_B$	0

So for every outcome one state can be excluded which goes against ψ – *Epistemic* theory of QM.

Towards ψ -Complete Theory?

$$p(x|a,b,\lambda) = p(x|a,\lambda)$$

$$p(y|a,b,\lambda) = p(y|b,\lambda)$$

 λ may include quantum state ψ .

$$\int p(x,y|a,b,\lambda)\mu(\lambda)d\lambda = p(x,y|a,b,\psi_{AB})$$
$$\int p(x|a,\lambda)\mu(\lambda)d\lambda = p(x|a,\rho_{A})$$
$$\int p(y|b,\lambda)\mu(\lambda)d\lambda = p(y|b,\rho_{B})$$

We search for a theory for which

$$p(x|a,\lambda) \neq p(x|a,\rho_A)$$

Singlet statistics can not be reproduced by such theory.

$$p(+1|\ \sigma_n,\lambda) = p\left(+1\Big|\sigma_n,\frac{I}{2}\right) = \ p(-1|\ \sigma_n,\lambda) = p\left(-1\Big|\sigma_n,\frac{I}{2}\right) = \frac{1}{2}$$

(Colbeck & Renner, PRL, 2008 and Liefer, Quanta, 2014.)

Great consequence of C-R result:

- $|\phi^{+}\rangle$ Prob. of down result is $\frac{1}{2}$ for all λ in its support
- $|00\rangle$ Prob. of down result is 0 for all λ in its support

To my knowledge, this is the first time, one could show without further assumption excepting nosignaling that two non-orthogonal states are ontologically distinct.

(Leifer, Quanta, 2014)

Some questions:

- 1) How to see the preparation independence assumption of PBR result?
- 2) Does ψ epistemic theory really solve the measurement problem?
- 3) What is the final implication of Colbeck-Renner result?

My Philosophical position:

I am materialist and hence believe in the existence of matter independent of our consciousness. I do not reduce matter to the sum of our sensations as preached by Positivists like Mach. The properties of matter belong to the category of Science and hence I am not afraid if rules of nature say that quantum particle may not possess definite position and momentum.

To me ψ is, of course, wave function of something that exists independently of my consciousness.