The Nature of the Quantum State

Matthew Leifer Chapman University

Observing a Century of Quantum Mechanics December 21, 2024

The Wisdom of S. N. Bose

 Introduction

 Epistemic Explanations

 Ontological Models

 Ψ-epistemic models

 Max. ψ-epistemic

 Overlap bounds

 Overlap bounds from contextuality

 Conclusions

I asked him whether he felt elated or happy or transported when he discovered what is called the Bose statistics. 'If I were truly honest I can say NO. My feelings were entirely different. Let me put it this way: Suppose you had a severe headache or stomachache – and the ache suddenly stopped. That was the feeling I had. For all the previous derivations gave me ceaseless pain. If you call cessation of pain as happiness – then I can say I was happy. [...]'

S. Ramaseshan, Satyendranath Bose, A conversation with Satyendranath Bose about five decades ago – Some recollections, *Current Science*, Vol. 78, No. 5 (2000), pp. 636-638.

A Less Auspicious Anniversary

ls
AI
ψ-(
Matthe
Perimete
Editors: k
Article hist

Is the Quantum State Real? An Extended Review of ψ -ontology Theorems

Matthew Saul Leifer

Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, Canada. E-mail: matt@mattleifer.info

Editors: Klaas Landsman, Roger Colbeck & Terry Rudolph

Article history: Submitted on December 15, 2013; Accepted on October 12, 2014; Published on November 5, 2014.

Quanta | DOI: 10.12743/quanta.v3i1.22

November 2014 | Volume 3 | Issue 1 | Page 67

Introduction
Epistemic vs. ontic
Classical states
History
Heirarchy
Epistemic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Conclusions

Introduction

$\psi\text{-epistemic}$ vs. $\psi\text{-ontic}$

- Ontic state: a state of reality.
 - $\neg \psi$ *-ontic*: the quantum state is ontic.

- Epistemic state: a state of knowledge or information.
 - ψ -epistemic: the quantum state is epistemic.

Note: We only consider *realist* versions here, i.e. *ontological models*.

Classical states

IISER Kolkata 12/21/2024 - 6 / 54

Recent History of Ψ -ontology

Introduction Epistemic vs. ontic Classical states History Heirarchy

Epistemic Explanations

Ontological Models

 $\Psi\text{-epistemic models}$

Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Conclusions

- 2004/2007: Spekkens proposes *epistricted toy theory* in which there is a limit - *epistemic restriction* - on what we can know about the ontic state. Roughy: at most half of the available information can be known.
 - Many puzzling quantum phenomena have natural explanations in this theory because the analogues of quantum states are epistemic.
 - Extensions of the theory cover odd-dimensional stabilizer quantum mechanics and Gaussian quantum mechanics.

2007/2010: Harrigan and Spekkens propose formal definitions of ψ -ontic and ψ -epistemic.

R. W. Spekkens, *Phys. Rev. A* 75(3):032110 (2007) arXiv:quant-ph/0401052 N. Harrigan & R. W. Spekkens, *Found. Phys.* 40:125 (2010) arXiv:0706.2661

Recent History of Ψ -ontology

Introduction Epistemic vs. ontic Classical states History Heirarchy Epistemic Explanations Ontological Models ⊈-epistemic models

Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Conclusions

- 2011/2012: Pusey-Barrett-Rudolph prove that an ontological model of quantum theory satisfying the *Preparation Independence Posulate (PIP)* must be ψ -ontic.
 - Other ψ -ontology theorems followed with different assumptions.
 The PIP alternative assumptions were criticized.
 - □ 2014: Some guy wrote an ovely long review article about this.
- 1 2012/2013: Without the PIP, ψ -epistemic models are shown to exist for all finite-dimensional Hilbert spaces.
- Two alternative tracks for ψ -ontology theorems:
 - \Box Find alternative assumptions that are "less controversial".
 - □ Stick with the bare ontological models framework and prove something weaker.

M. Pusey et. al., *Nature Physics*, 8:475–478 (2012) arXiv:1111.3328
M. Leifer, *Quanta*, 3:67–155 (2014) arXiv:1409.1570
P. G. Lewis et. al., *Phys. Rev. Lett.* 109:150404 (2012) arXiv:1201.6554, S. Aaronson et. al., *Phys. Rev. A* 88:032111 (2013) arXiv:1303.2834

Heirarchy of No-Go Results

IISER Kolkata 12/21/2024 - 9 / 54

Introduction

- Epistemic Explanations
- Ontology
- States/Measurements
- Indistinguishability
- Mixtures
- No cloning
- Ontological Models
- Ψ -epistemic models
- Max. ψ -epistemic
- Overlap bounds
- Overlap bounds from contextuality
- Conclusions

Explanations in the Spekkens Toy Theory

Ontology of a Spekkens toy bit

States and measurements of a toy bit

IISER Kolkata 12/21/2024 - 12 / 54

Indistinguishability of Nonorthogonal Pure States

Non-uniquness of decompositions of mixed states into pure

states

No cloning

Introduction
Epistemic Explanations
Ontological Models
Operational description
Ontic description
Formal definition
Quantum Models
Naughty Notation
ψ -ontic vs. ψ -epistemic
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds
Overlap bounds from contextuality
Conclusions

Ontological Models

Prepare-and-measure experiments: Operational description

Introduction	•
Epistemic Explanations	D D D D D D D D D D D D D D D D D D D
Ontological Models	6 6
Operational description	D D D
Ontic description	D D D
Formal definition	D D D
Quantum Models	• • •
Naughty Notation))
ψ -ontic vs. ψ -epistemic	
$\Psi ext{-epistemic models}$	•
Max. ψ -epistemic	
Overlap bounds	> > •

Overlap bounds from contextuality

Conclusions

- P is a choice of *preparation*.
- M is a choice of *measurement*.
- k is the *outcome* of the measurement.
- An operational theory assigns probabilities Prob(k|P, M) to each such experiment.

Prepare-and-measure experiments: Ontological description

 $\operatorname{Prob}(k|P, M) = \int \operatorname{Pr}(k|M, \lambda) d\mu_P$

Introduction
Epistemic Explanations
Ontological Models
Operational description
Ontic description
Formal definition
Quantum Models
Naughty Notation
ψ -ontic vs. ψ -epistemic
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds
Overlap bounds from contextuality
Conclusions

An ontological model consists of:

A measurable space (Λ, Σ) .

Introduction Epistemic Explanations **Ontological Models** Operational description Ontic description Formal definition Quantum Models Naughty Notation ψ -ontic vs. ψ -epistemic Ψ -epistemic models Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality Conclusions

An ontological model consists of:

- A measurable space (Λ, Σ) .
- For each preparation P, a probability measure $\mu_P: \Sigma \to [0, 1]$.

Introduction Epistemic Explanations **Ontological Models** Operational description Ontic description Formal definition Quantum Models Naughty Notation ψ -ontic vs. ψ -epistemic Ψ -epistemic models Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality

Conclusions

An ontological model consists of:

- I A measurable space (Λ, Σ) .
- For each preparation P, a probability measure $\mu_P: \Sigma \to [0, 1]$.
- For each measurement M, a set of conditional probability functions $\Pr(k|M,\cdot):\Lambda\to[0,1]$ satisfying

$$\forall \lambda, \ \sum_k \Pr(k|M, \lambda) = 1.$$

Introduction Epistemic Explanations **Ontological Models** Operational description Ontic description Formal definition Quantum Models Naughty Notation ψ -ontic vs. ψ -epistemic Ψ -epistemic models Max. ψ -epistemic Overlap bounds

Overlap bounds from contextuality

Conclusions

An ontological model consists of:

I A measurable space (Λ, Σ) .

For each preparation P, a probability measure $\mu_P: \Sigma \to [0, 1]$.

For each measurement M, a set of conditional probability functions $\Pr(k|M,\cdot):\Lambda\to[0,1]$ satisfying

$$\forall \lambda, \ \sum_k \Pr(k|M,\lambda) = 1.$$

The model is required to reproduce the operational predictions, i.e.

$$\int_{\Lambda} \Pr(k|M,\lambda) d\mu_P = \Pr(k|P,M).$$

IISER Kolkata 12/21/2024 - 19 / 54

Quantum Models

 Introduction

 Epistemic Explanations

 Ontological Models

 Operational description

 Ontic description

 Formal definition

 Quantum Models

 Naughty Notation

 ψ -epistemic

 ψ -epistemic models

 Max. ψ -epistemic

 Overlap bounds

Overlap bounds from contextuality

Conclusions

- We are most interested in the case where the operational theory has a model within quantum theory, in which case:
- Each preparation P is assigned a density operator ρ_P .

Each measurement M is assigned a POVM $\{E_k^M\}$, s.t.

$$\sum_{k} E_k^M = I.$$

The operational probabilities are given by

$$\operatorname{Prob}(k|P,M) = \operatorname{Tr}\left(E_k^M \rho_P\right).$$

and so an ontological model must satisfy

$$\operatorname{Tr}\left(E_{k}^{M}\rho_{P}\right) = \int_{\Lambda} \Pr(k|\lambda, M) \mathrm{d}\mu_{P}.$$

IISER Kolkata 12/21/2024 - 20 / 54

Naughty Notation

Introduction Epistemic Explanations Ontological Models Operational description Ontic description Formal definition Quantum Models Naughty Notation

 ψ -ontic vs. ψ -epistemic

 $\Psi ext{-epistemic models}$

Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Conclusions

The mappings $P \to \rho_P$ and $(M, k) \to E_k^M$ need not be one-to-one.

$$\square \quad \rho_{P_1} - \rho_{P_2}$$
 does not imply $\mu_{P_1} - \mu_{P_2}$.

$$\square \quad E_{k_1}^{M_1} = E_{k_2}^{M_2} \text{ does not imply } \Pr(k_1|\lambda, M_1) = \Pr(k_2|\lambda, M_2).$$

In fact, in general, they cannot be because of contextuality.

It is very naughty to write:

- \square $\mu_{
 ho}$ instead of μ_{P} ,
- \Box $\Pr(k|\lambda, E)$ instead of $\Pr(k|\lambda, M)$.

However, we will often do so to avoid clutter.

 \Box A statement involving μ_{ρ} really means:

 $\forall P$ s.t. $\rho_P = \rho$, the same statement for μ_P .

 \Box A statement involving $\Pr(k|\lambda, E)$ really means:

 $\forall (M,k) \quad \text{s.t.} \quad E_k^M = E, \ \text{the same statement for } \Pr(k|\lambda,M). \\ \text{IISER Kolkata 12/21/2024 - 21 / 54}$

$\psi\text{-ontic}$ and $\psi\text{-epistemic}$ models

Introduction **Epistemic Explanations Ontological Models** Operational description Ontic description Formal definition Quantum Models Naughty Notation ψ -ontic vs. ψ -epistemic Ψ -epistemic models Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality Conclusions

 ρ and σ are *ontologically distinct* in an ontological model if there exists $\Omega\in\Sigma$ s.t.

An ontological model is ψ -ontic if every pair of pure states is ontologically distinct. Otherwise it is ψ -epistemic.

Introduction	•
Epistemic Explanations	• • • •
Ontological Models	•
Ψ -epistemic models	•
The Kochen-Specker model	•
Models for arbitrary	•
finite dimension	•
Max. ψ -epistemic	•
Overlap bounds	• • • •

.

Overlap bounds from contextuality

Conclusions

$\Psi\text{-epistemic models}$

The Kochen-Specker model for a qubit

Models for arbitrary finite dimension

Introduction	•
Epistemic Explanations	
Ontological Models	•
Ψ -epistemic models	•
The Kochen-Specker	•
model	•
Models for arbitrary	•
finite dimension	• •
Max. ψ -epistemic	•
Max. ψ -epistemic Overlap bounds	•
Max. ψ -epistemic Overlap bounds Overlap bounds from	
Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality	
Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality Conclusions	
Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality Conclusions	
Max. ψ-epistemic Overlap bounds Overlap bounds from contextuality Conclusions	

- Lewis et. al. provided a ψ -epistemic model for all finite d.
 - P. G. Lewis et. al., *Phys. Rev. Lett.* 109:150404 (2012) arXiv:1201.6554
- Aaronson et. al. provided a similar model in which every pair of nonorthogonal states is ontologically indistinct.
 - S. Aaronson et. al., *Phys. Rev. A* 88:032111 (2013) arXiv:1303.2834
- These models have the feature that, for a fixed inner product, the amount of overlap decreases with d.
 - I This invalidates the Spekkens' toy model explanations, so stronger notions of ψ -epistemic should be investigated.

Introduction
Epistemic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Two definitions
Definition1
Classical overlap
Quantum Symmetric overlap
Definition 2
Criticism
Gool

Overlap bounds

Overlap bounds from contextuality

Conclusions

Maximally ψ -epistemic models

Two definitions of maximally psi-epistemic models

Introduction **Epistemic Explanations Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap **Definition 2** Criticism Goal Overlap bounds Overlap bounds from contextuality Conclusions

- Two related but nonequivalent definitions of a maximally ψ -epistemic model have been proposed.
- They are both based on the Spekkens explanation for the indistinguishability of pure states: the indistinguishability should be explained by overlap of the corresponding probability measures.

Maximally ψ -episitemic 1

Introduction **Epistemic Explanations Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap **Definition 2** Criticism Goal Overlap bounds Overlap bounds from contextuality Conclusions

An ontological model is *Maximally* ψ *-epistemic 1* if, for every pair of pure states $|\psi\rangle$, $|\phi\rangle$,

$$\int_{\Lambda} \Pr(\phi|M,\lambda) \,\mathrm{d}\mu_{\psi} = \int_{\Omega} \Pr(\phi|M,\lambda) \,\mathrm{d}\mu_{\psi},$$

for every $\Omega \in \Sigma$ such that $\mu_{\phi}(\Omega) = 1$.

O. Maroney, (2012) arXiv:1207.6906

M. Leifer and O. Maroney, *Phys. Rev. Lett.* 110:120401 (2013) arXiv:1208.5132

M. Leifer, *Quanta*, 3:67–155 (2014) arXiv:1409.1570

Maximally ψ -episitemic 1

- Introduction **Epistemic Explanations Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap **Definition 2** Criticism Goal Overlap bounds Overlap bounds from contextuality Conclusions
- The probability of obtaining $|\phi\rangle$ when the system is prepared in the state $|\phi\rangle$ is entirely explained by the overlap of μ_{ψ} and μ_{ϕ} .
- The Kochen-Specker model and Spekkens' toy theory are maximally ψ -epistemic 1.
- Can show that

Maximally ψ -epistemic 1 \Rightarrow Kochen-Specker noncontextual,

so any proof of Kochen-Specker contextuality rules out maximally ψ -epistemic 1 models.

Classical overlap

Introduction Epistemic Explanations **Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap **Definition 2** Criticism Goal Overlap bounds Overlap bounds from contextuality Conclusions

Classical overlap:

Optimal success probability of distinguishing $|\psi\rangle$ and $|\phi\rangle$ if you know λ :

$$p_c(\psi, \phi) = \frac{1}{2} (2 - L_c(\psi, \phi))$$

IISER Kolkata 12/21/2024 - 30 / 54

Quantum Symmetric overlap

Introduction Epistemic Explanations **Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap **Definition 2** Criticism Goal Overlap bounds Overlap bounds from contextuality

Conclusions

Classical overlap:

$$L_c(\psi,\phi) := \inf_{\Omega \in \Sigma} \left[\mu_{\psi}(\Omega) + \mu_{\phi}(\Lambda \backslash \Omega) \right]$$

Quantum overlap:

$$L_{q}(\psi,\phi) := \inf_{0 \le E \le I} \left[\langle \psi | E | \psi \rangle + \langle \phi | (I - E) | \phi \rangle \right]$$
$$= 1 - \sqrt{1 - \left| \langle \phi | \psi \rangle \right|^{2}}$$

Optimal success probability of distinguishing $|\psi\rangle$ and $|\phi\rangle$ based on a quantum measurement:

$$p_q(\psi,\phi) = \frac{1}{2} \left(2 - L_q(\psi,\phi)\right)$$

IISER Kolkata 12/21/2024 - 31 / 54

Maximally $\psi\text{-epistemic}\ \mathbf{2}$

 Introduction

 Epistemic Explanations

 Ontological Models

 Ψ -epistemic models

 Max. ψ -epistemic

 Two definitions

 Definition1

 Classical overlap

 Quantum Symmetric overlap

 Definition 2

Criticism

Goal

Overlap bounds

Overlap bounds from contextuality

Conclusions

A model is *maximally* ψ *-epistemic 2* if, for all pure states $|\psi\rangle$, $|\phi\rangle$,

$$L_c(\psi,\phi) = L_q(\psi,\phi).$$

- I The indistinguishability of pure states is entirely explained by the fact that the corresponding probability measures overlap.
- The Kochen-Specker model and Spekkens' toy theory are maximally ψ -epistemic 2.
- Although maximally ψ -epistemic 2 does not seem to imply Kochen-Specker noncontextuality, we can use noncontextuality inequalities to rule it out, as we will see.

J. Barrrett et. al., *Phys. Rev. Lett.* 112:250403 (2014) arXiv:1310.8302

Criticism

Introduction
Epistemic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Two definitions
Definition1
Classical overlap
Quantum Symmetric overlap
Definition 2
Criticism
Goal
Overlap bounds
Overlap bounds from contextuality

Conclusions

- The structure of these definitions is as follows:
- Take one of the explanations of quantum phenomena from the Spekkens toy theory.
- Demand that this explanation completely accounts for the phenomenon in a maximally ψ -epistemic model.
- The decision to focus on the indistinguishability of pure states is arbitrary. We could instead demand:
 - 1. The optimal fidelity of approximate cloning is equal to the optimal fidelity of cloning when you know λ .
 - 2. Different decompositions of mixed states always give the same probability measure.
 - 3. Use a different state discrimination task, e.g. unambiguous discrimination.
- These give different classifications of models, e.g. 2 is preparation noncontextuality, which fails for any model of a qubit, such as the Kochen-Specker model.
 IISER Kolkata 12/21/2024 – 33 / 54

Criticism

Introduction	
Epistemic Explanations	
Ontological Models	
Ψ -epistemic models	
Max. ψ -epistemic	
Two definitions	
Definition1	
Classical overlap	
Quantum Symmetric overlap	
Definition 2	
Criticism	
Goal	
Overlap bounds	
Overlap bounds from contextuality	
Conclusions	

- In any ontological model there are two possible explanations of state indistinguishability:
 - 1. The probability measures overlap.
 - 2. The response functions only reveal coarse-grained information about λ .
- Why should 2 play no role in a ψ -epistemic model?
 - □ In Spekkens' toy theory the assumption that you can only know half of the available information about λ implies that the response functions must be coarse-grained.
 - It just so happens that Spekkens' theory is still maximally ψ -epistemic, but in general there is a principled epistemic reason for coarse-graining, and no good argument for why this should play no role in state indistinguishability.

Introduction **Epistemic Explanations Ontological Models** Ψ -epistemic models Max. ψ -epistemic Two definitions Definition1 Classical overlap Quantum Symmetric overlap Definition 2 Criticism Goal Overlap bounds Overlap bounds from contextuality

Conclusions

In light of this, the goal ought to be: Show that there must be pure states $|\psi\rangle$, $|\phi\rangle$ such that

 $L_c(\psi, \phi) \le \epsilon, \qquad L_q(\psi, \phi) > 1 - \delta,$

with $\epsilon, \delta > 0$ and try to make ϵ and δ as small as possible.

Introduction
Epistemic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds
Overlap bounds ψ -ontology measures
$\frac{\text{Overlap bounds}}{\psi\text{-ontology measures}}$ Previous results
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

contextuality

Conclusions

Overlap bounds

ψ -ontology measures

 Introduction

 Epistemic Explanations

 Ontological Models

 Ψ-epistemic models

 Max. ψ-epistemic

 Overlap bounds

 ψ-ontology measures

 Previous results

 Distinguishability deficit

 Experiment

 Overlap bounds from contextuality

Conclusions

Given a set V of states, and another state $|\psi\rangle$, we can upper bound the average overlap

$$\langle L_c \rangle = \sum_{|a\rangle \in V} p_a L_c(\psi, a),$$

where p_a is a probability distribution over V. Most works use this to bound the ratio:

$$k = \frac{\langle L_c \rangle}{\langle L_q \rangle}.$$

Better to use the difference:

$$\Box$$
 Overlap deficit: $\Delta L = \langle L_q \rangle - \langle L_c \rangle$

Previous results

Introduction		Dimension	V	$\langle L_c \rangle$	$\langle L_q \rangle$
Epistemic Explanations Ontological Models Ψ-epistemic models Max. ψ-epistemic	Barrett et. al.1	Prime power $d \ge 4$	d^2	$1/d^{2}$	$1 - \sqrt{1 - 1/d}$
Overlap bounds ψ -ontology measures Previous results	Leifer ²	$d \ge 3$	2^{d-1}	$1/2^{d-1}$	$1 - \sqrt{1 - 1/d}$
Distinguishability deficit Experiment Overlap bounds from contextuality	Branciard ³	$d \ge 4$	$n \ge 2$	1/n	$1 - \sqrt{1 - \frac{1}{4}n^{-1/(d-2)}}$
Conclusions	Amaral et. al.4	$d \ge n_j$	$n_j \ge ?$	$n_j^{\delta-1}$	$1 - \sqrt{\frac{1}{2} + \epsilon}$
¹ J. Barrrett et. al., Phys. Rev. Lett. 112, 250403 (2014) ² ML, Phys. Rev. Lett. 112, 160404 (2014) ³ C. Branciard, Phys. Rev. Lett. 113, 020409 (2014) ⁴ B. Amaral et. al., Phys. Rev. A 92, 062125 (2015)					

Optimizing for distinguishability deficit

Introduction				
Epistemic Explanations		Optimal dimension	Optimal $ V $	ΔL
Ontological Models				
Ψ -epistemic models	Barrett et. al.	4	16	0.0715
Max. ψ -epistemic				
Overlap bounds				
ψ -ontology measures	Leifer	7	64	0.0586
Previous results				
Distinguishability deficit				
Experiment		4		0 1 9 4
Overlap bounds from	Branciard	4	$n \to \infty$	0.134
contextuality				
Conclusions				
	Amaral et. al.	$d \to \infty$	$n_i \to \infty$	0.293
			J	

Experiment

IntroductionEpistemic ExplanationsOntological Models Ψ -epistemic modelsMax. ψ -epistemicOverlap bounds ψ -ontology measuresPrevious resultsDistinguishability deficitExperiment

Overlap bounds from contextuality

Conclusions

Ringbauer et. al.⁵ experiment (based on Branciard's construction) obtained: $k \le 0.690 \pm 0.001$

 $\Delta L \ge 0.047 \pm 0.010$

My analysis suggests larger ΔL should be obtainable from the Barrett et. al. construction.

⁵M. Ringbauer et. al. Nature Physics 11, 249–254 (2015).

Introduction
Epistemia Explanationa
Episternic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds

Overlap bounds from contextuality

Noncontextuality

Overlap bounds

General results

Conclusions

Overlap bounds from contextuality

Kochen-Specker noncontextuality

Introduction **Epistemic Explanations Ontological Models** Ψ -epistemic models Overlap bounds from contextuality Noncontextuality

Max. ψ -epistemic

Overlap bounds

Overlap bounds

General results

Conclusions

Let \mathcal{M} be a set of orthonormal bases in \mathbb{C}^d .

An ontological model for \mathcal{M} is Kochen Specker noncontextual if it is

Outcome deterministic: $Pr(a|M, \lambda) \in \{0, 1\}$ \square

Measurement noncontextual: If there exist $M, N \in \mathcal{M}$ and $|a\rangle$ such that $|a\rangle \in M$ and $|a\rangle \in N$ then

$$\Pr(a|M, \cdot) = \Pr(a|N, \cdot).$$

Define:

$$\Gamma_a^M = \{\lambda \in \Lambda | \Pr(a|M, \lambda) = 1\} \qquad \Gamma_a = \bigcap_{\{M \in \mathcal{M} | | a \rangle \in M\}} \Gamma_a^M$$

Theorem: There exists a KS noncontextual model for \mathcal{M} iff there exists a model where, for all $|\psi\rangle$, $M \in \mathcal{M}$, $|a\rangle \in M$,

$$\int_{\Lambda} \Pr(a|M,\lambda) d\mu_{\psi}(\lambda) = \mu_{\psi}(\Gamma_a).$$

IISER Kolkata 12/21/2024 - 42 / 54

Deriving overlap bounds

Introduction Epistemic Explanations Ontological Models Ψ -epistemic models

Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Noncontextuality

Overlap bounds

General results

Conclusions

For a (finite) set V of states, a noncontextuality inequality is a bound of the form

$$\sum_{|a\rangle \in V} p_a \mu_{\psi}(\Gamma_a) \le \gamma.$$

Let ${\mathcal M}$ be a covering set of bases for V. We have

$$\int_{\Lambda} \Pr(a|M,\lambda) d\mu_a(\lambda) = |\langle a|a\rangle|^2 = 1$$

and since $\Pr(a|M, \lambda) \leq 1$ this implies that $\mu_a(\Gamma_a^M) = 1$.

Since $\Gamma_a = \bigcap_{M \in \mathcal{M} ||a\rangle \in M} \Gamma_a^M$ is a finite intersection of measure one sets, we also have

$$\mu_a(\Gamma_a) = 1.$$

IISER Kolkata 12/21/2024 - 43 / 54

Deriving overlap bounds

Introduction Epistemic Explanations **Ontological Models** Ψ -epistemic models Max. ψ -epistemic Overlap bounds Overlap bounds from contextuality Noncontextuality Overlap bounds General results Conclusions

Now,

$$L_{c}(\psi, a) = \inf_{\Omega \in \Sigma} [\mu_{\psi}(\Omega) + \mu_{a}(\Lambda \backslash \Omega)]$$
$$\leq \mu_{\psi}(\Gamma_{a}) + \mu_{a}(\Lambda \backslash \Gamma_{a})$$

We just showed that $\mu_a(\Gamma_a) = 1$, so $\mu_a(\Lambda \setminus \Gamma_a) = 0$, and hence $L_c(\psi, a) \le \mu_{\psi}(\Gamma_a).$

Hence,

$$\sum_{|a\rangle\in V} p_a L_c(\psi, a) \le \sum_{|a\rangle\in V} p_a \mu_{\psi}(\Gamma_a) \le \gamma.$$

General results

Introduction Epistemic Explanations Ontological Models Ψ -epistemic models

Max. ψ -epistemic

Overlap bounds

Overlap bounds from contextuality

Noncontextuality

Overlap bounds

General results

Conclusions

Using Cabello, Severini and Winter's results⁶, for a set of states V, we can derive

$$\frac{1}{|V|} \sum_{|a\rangle \in V} L_c(\psi, a) \le \frac{\alpha(G)}{|V|},$$

where $\alpha(G)$ is the *independence number* of the *orthogonality graph* of V.

- Other bounds come from a different technique, introduced by Barrett et. al.⁷.
- It turns out that this method is also based on noncontextuality inequalities⁸.

⁶A. Cabello, S. Severini, A. Winter, Phys. Rev. Lett. 112:040401 (2014).

- ⁷J. Barrrett et. al., Phys. Rev. Lett. 112, 250403 (2014)
- ⁸M. Leifer & C. Duarte, *Phys. Rev. A* 101:062113 (2020) arXiv:2001.11485

Introduction
Enistomia Evaluations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds
Overlap bounds from
contextuality
Conclusions

Related Work

questions What now for ψ -epistemicists?

References

Summary and Open

Conclusions

Related Work

Introduction	•
Epistemic Explanations	•
Ontological Models	•
Ψ -epistemic models	•
Max. ψ -epistemic	•
Overlap bounds	•
Overlap bounds from contextuality	•
Conclusions	•
Related Work	•
Summary and Open questions	•
What now for	•

 ψ -epistemicists?

References

Bounds involving dynamics:

- Based on unitary dynamics: J. Allen, Quantum Stud.: Math.
 Found. 3, 161–177 (2016).
- Based on collapse dynamics: J. Ruebeck et. al., Quantum 4, 242 (2020).
- Bounds based on higher order overlaps:
 - □ S. Ray, R. Visweshwaran, D. Saha, arXiv:2401.17980 (2024).
- Several posters here.

Summary and Open questions

Introduction Epistemic Explanations Ontological Models Ψ-epistemic models Max. ψ-epistemic Overlap bounds Overlap bounds from contextuality

Conclusions

Related Work

Summary and Open questions

What now for ψ -epistemicists?

References

Summary:

- □ Several bounds exist showing $k \to 0$. Harder to get $\Delta L \approx 1$. Best current bound is $\Delta L \approx 0.293$.
- Any noncontextuality inequality of the appropriate type is an overlap bound.
- Open questions:
 - □ Error analysis for arbitrary noncontextuality-based overlap bounds.
 - \Box What is the best possible bound on ΔL ?
 - Are their overlap bounds that do not follow from noncontextuality inequalities?
 - □ Applications in quantum information.

What now for ψ -epistemicists?

 Introduction

 Epistemic Explanations

 Ontological Models

 Ψ-epistemic models

 Max. ψ-epistemic

 Overlap bounds

 Overlap bounds from contextuality

 Conclusions

 Related Work Summary and Open questions

What now for ψ -epistemicists?

References

In any case, ontological models are not viable for a $\psi\text{-epistemicist},$ so what now?

- Become neo-Copenhagen.
- Adopt a more exotic ontology:
 - □ Nonstandard logics and probability theories.
 - \Box Ironic many-worlds.
 - □ Retrocausality.
 - □ Relationalism.

What now for ψ -epistemicists?

IntroductionEpistemic ExplanationsOntological Models Ψ -epistemic modelsMax. ψ -epistemicOverlap boundsOverlap bounds from

contextuality

Conclusions

Related Work Summary and Open questions

What now for ψ -epistemicists?

References

In any case, ontological models are not viable for a $\psi\text{-epistemicist},$ so what now?

Become neo-Copenhagen.

- Adopt a more exotic ontology:
 - □ Nonstandard logics and probability theories.
 - \Box Ironic many-worlds.
 - □ Retrocausality.
 - Relationalism.
- Explanatory conservatism: If there is a natural explanation for a quantum phenomenon then we should adopt an interpretation that incorporates it.

Suggests exploring exotic ontologies.

References

Introduction Epistemic Explanations Ontological Models Ψ-epistemic models Max. ψ-epistemic Overlap bounds Overlap bounds from contextuality Conclusions Related Work Summary and Open

Summary and Open questions

What now for ψ -epistemicists?

References

Review articles:

- □ ML, "Is the quantum state real? An extended review of ψ -ontology theorems", *Quanta* 3:67–155 (2014), arXiv:1409.1570.
- D. Jennings and ML, "No Return to Classical Reality", *Contemp. Phys.* 56 (2015). arXiv:1501.03202.
- Overlap bounds and contextuality:
 - ML and O. Maroney, "Maximally epistemic interpretations of the quantum state and contextuality", *Phys. Rev. Lett.* 110:120401 (2013) arXiv:1208.5132.
 - □ ML, " ψ -epistemic models are exponentially bad at explaining the distinguishability of quantum states "*Phys. Rev. Lett.* 112:160404 (2014) arXiv:1401.7996.
 - ML, "Review of Overlap Bounds on the Reality of the Quantum State" in preparation.

Introduction
Epistemic Explanations
Ontological Models
Ψ -epistemic models
Max. ψ -epistemic
Overlap bounds
Overlap bounds from contextuality
Conclusions
Additional slides
Other arguments
ψ -ontic arguments

Example

Additional slides

Other arguments

See ML Quanta 3:67–155 (2014) for more details.

Arguments for ontic quantum states

See ML Quanta 3:67–155 (2014) for more details.

Example: Klyachko inequality

Ususal proofs of contextuality inequalities use $\Gamma_a \cap \Gamma_b = \emptyset$ when $|\langle a|b \rangle|^2 = 0$. Example:

$$\Box |a_j\rangle = \sin\vartheta\cos\varphi_j |0\rangle + \sin\vartheta\sin\varphi_j |1\rangle + \cos\vartheta |2\rangle$$
$$\Box \varphi_j = \frac{4\pi j}{5} \text{ and } \cos\vartheta = \frac{1}{\sqrt[4]{5}}$$

