Top quark polarization

A probe of new physics

at **Institut fuer Theoretische Physik und Astronomie** ⁴ July, 2007 **Wuerzburg, Germany**

 $\mathbf{b}\mathbf{y}$

Ritesh K Singh

Laboratoire d'Annecy-Le-Vieux de Physique Theorique Annecy-Le-Vieux, France

The Standard Model has been tested to a high accuracy, but it still lacks

an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- first principle understanding of CP violation,

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- first principle understanding of CP violation,
- hierarchy of scales, electro-weak vs plank scale,

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- first principle understanding of CP violation,
- hierarchy of scales, electro-weak vs plank scale,
- hierarchy of Yukawa couplings (fermion masses).

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- first principle understanding of CP violation,
- hierarchy of scales, electro-weak vs plank scale,
- hierarchy of Yukawa couplings (fermion masses).

Many solution to the theoretical issues are proposed, but not all of them are addressed together.

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- first principle understanding of CP violation,
- hierarchy of scales, electro-weak vs plank scale,
- hierarchy of Yukawa couplings (fermion masses).

Many solution to the theoretical issues are proposed, but not all of them are addressed together.

SUSY	ED	TC	LH
	CP violation	CP violation	CP violation
Fermion mass	Fermion mass	Fermion mass	Fermion mass
		Scale hierarchy	Scale hierarchy

New particles

All new physics models introduce new particles/symmetries.

New particles

All new physics models introduce new particles/symmetries.

Scalars : Higgs, sfermions etc.

Productions : *s*-channel resonance, pair production, associated production **Signature** : threshold behaviour, polarization, 2-body decay, cascade decay. All new physics models introduce new particles/symmetries.

Scalars : Higgs, sfermions etc. **Productions :** *s*-channel resonance, pair production, associated production **Signature :** threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions : gaugino, higgsino, heavy fermion partners. Productions : pair production, associated production Signature : threshold behaviour, polarization, cascade decay. All new physics models introduce new particles/symmetries.

Scalars : Higgs, sfermions etc. **Productions :** *s*-channel resonance, pair production, associated production **Signature :** threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions : gaugino, higgsino, heavy fermion partners. Productions : pair production, associated production Signature : threshold behaviour, polarization, cascade decay.

Vectors : KK-excitations of gauge bosons, heavy bosons. Productions : *s*-channel resonance, associated production, pair production Signature : polarization, 2-body decay, cascade decay. All new physics models introduce new particles/symmetries.

Scalars : Higgs, sfermions etc. Productions : *s*-channel resonance, pair production, associated production Signature : threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions : gaugino, higgsino, heavy fermion partners. Productions : pair production, associated production Signature : threshold behaviour, polarization, cascade decay.

Vectors : KK-excitations of gauge bosons, heavy bosons. Productions : *s*-channel resonance, associated production, pair production Signature : polarization, 2-body decay, cascade decay.

Polarization observables and decay pattern are most important features to study new particles.

Top quark & new physics

Top quark's coupling to the SM particles are subjected to modification due to new particlesi/interactions.

$$t\bar{t}\phi := g_{t\bar{t}\phi}(S_t + iP_t\gamma_5)$$
$$t\bar{t}V := g_V \left[\gamma^{\mu}(f_{1L}P_L + f_{1R}P_R) + \frac{i\sigma^{\mu\nu}}{m_W} q_{\nu} (f_{2L}P_L + f_{2R}P_R)\right]$$

Top quark's couplings to the new particles leads to associated productions; polarization of top quark can be used to probe the new particles couplings and properties.

⇒ Study of new physics can be done via study of top quark.

Top quark properties

	Measurement	SM prediction
Mass	$171.4 \pm 2.1 \text{ GeV}$	-
Charge	Not 4/3 (94% CL)	2/3
F_0	0.59 ± 0.14	0.75
F_+	< 0.10(95%~CL)	0
Spin	-	1/2

\Rightarrow Need to know top quark properties precisely.

We assume spin of top quark to be 1/2 and charge to be 2/3, an in the SM, for rest of our study of new physics.

The mass of the top-quark is very large ($m_t \sim 172 \text{ GeV}$)

top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

The mass of the top-quark is very large ($m_t \sim 172 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.

The mass of the top-quark is very large ($m_t \sim 172 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- In the decay lepton angular distribution is insensitive to the anomalous *tbW* couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at *e*⁺*e*⁻ (Rindani, Grzadkowski) as well as *γγ* collider (Ohkuma, Godbole).

The mass of the top-quark is very large ($m_t \sim 172 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- In the decay lepton angular distribution is insensitive to the anomalous *tbW* couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at *e*⁺*e*⁻ (Rindani, Grzadkowski) as well as *γγ* collider (Ohkuma, Godbole).
- top-decay products provide a clean and un-contaminated probe of top-production mechanism.

The mass of the top-quark is very large ($m_t \sim 172 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- In the decay lepton angular distribution is insensitive to the anomalous *tbW* couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at *e*⁺*e*⁻ (Rindani, Grzadkowski) as well as *γγ* collider (Ohkuma, Godbole).
- top-decay products provide a clean and un-contaminated probe of top-production mechanism.

We have a clean looking glass for new physics.

Anomalous *t***-decay**

Anomalous *tbW* vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i\sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

Anomalous *t***-decay**

Anomalous *tbW* vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i\sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

■ In the SM, $f_{1L} = 1$, $f_{1R} = 0$, $f_{2L} = 0$, $f_{2R} = 0$.

• Contribution from f_{1R} , f_{2L} are proportional to m_b .

Lepton distribution is independent of anomalous *tbW* coupling if

t-quark is on-shell; narrow-width approximation for *t*-quark,

$$AB \longrightarrow \begin{array}{c} t \\ P_1 \\ b \\ W^+ \\ l \\ \mu \\ \nu \end{array}$$

- *t*-quark is on-shell; narrow-width approximation for *t*-quark,
- **•** anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,

- *t*-quark is on-shell; narrow-width approximation for *t*-quark,
- **•** anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- Inarrow-width approximation for W-boson,

$$AB \longrightarrow \begin{array}{c} t \\ P_1 \\ b \\ W^+ \\ l^+ \nu \end{array}$$

- *t*-quark is on-shell; narrow-width approximation for *t*-quark,
- **•** anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- Inarrow-width approximation for W-boson,
- *b*-quark is mass-less,

$$AB \longrightarrow \begin{array}{c} t \\ P_1 \\ b \\ W^+ \\ l^+ \nu \end{array}$$

- *t*-quark is on-shell; narrow-width approximation for *t*-quark,
- **•** anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- Inarrow-width approximation for W-boson,
- *b*-quark is mass-less,
- $t \rightarrow bW(\ell \nu_{\ell})$ is the only decay channel for *t*-quark.

Narrow-width approximation for *t*-quark \Rightarrow

$$\overline{|\mathcal{M}|^2} = \frac{\pi\delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{\lambda,\lambda'} \rho(\lambda,\lambda') \Gamma(\lambda,\lambda')$$

where,

 $\rho(\lambda, \lambda') = M_{\rho}(\lambda) \ M_{\rho}^*(\lambda') \quad \text{and} \quad \Gamma(\lambda, \lambda') = M_{\Gamma}(\lambda) \ M_{\Gamma}^*(\lambda').$

Narrow-width approximation for *t*-quark \Rightarrow

$$\overline{|\mathcal{M}|^2} = \frac{\pi\delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{\lambda,\lambda'} \rho(\lambda,\lambda') \Gamma(\lambda,\lambda')$$

where,

$$\rho(\lambda, \lambda') = M_{\rho}(\lambda) \ M_{\rho}^*(\lambda') \quad \text{and} \quad \Gamma(\lambda, \lambda') = M_{\Gamma}(\lambda) \ M_{\Gamma}^*(\lambda').$$

$$d\sigma = \sum_{\lambda,\lambda'} \left[\frac{(2\pi)^4}{2I} \rho(\lambda,\lambda') \delta^4(k_A + k_B - p_t - \sum_i^{n-1} p_i) \frac{d^3 p_t}{2E_t (2\pi)^3} \prod_i^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \right] \\ \times \left[\frac{1}{\Gamma_t} \left(\frac{(2\pi)^4}{2m_t} \Gamma(\lambda,\lambda') \delta^4(p_t - p_b - p_\nu - p_\ell) \frac{d^3 p_b}{2E_b (2\pi)^3} \frac{d^3 p_\nu}{2E_\nu (2\pi)^3} \right) \frac{d^3 p_\ell}{2E_\ell (2\pi)^3} \right].$$

Production part ($\phi_t = 0$) :

$$\int \frac{d^3 p_t}{2E_t (2\pi)^3} \prod_i^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_i^{n-1} p_i\right) \right)$$

 $= d\sigma_{2 \to n}(\lambda, \lambda') \, dE_t \, d\cos\theta_t.$

Production part ($\phi_t = 0$) :

$$\int \frac{d^3 p_t}{2E_t (2\pi)^3} \prod_i^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_i^{n-1} p_i\right) \right)$$
$$= d\sigma_{2 \to n}(\lambda, \lambda') dE_t d\cos\theta_t.$$

Decay part (in rest rest frame of *t*-quark) :

$$\frac{1}{\Gamma_t} \frac{(2\pi)^4}{2m_t} \int \frac{d^3 p_\ell}{2E_\ell (2\pi)^3} \frac{d^3 p_b}{2E_b (2\pi)^3} \frac{d^3 p_\nu}{2E_\nu (2\pi)^3} \Gamma(\lambda, \lambda') \delta^4(p_t - p_b - p_\nu - p_\ell)
= \frac{1}{32\Gamma_t m_t} \frac{E_\ell}{(2\pi)^4} \frac{\langle \Gamma(\lambda, \lambda') \rangle}{m_t E_\ell} dE_\ell d\Omega_\ell dp_W^2.$$

Angular brackets stands for averaging over $\phi = (\phi_b - \phi_\ell)$.

Decay density matrix

In the rest frame of *t*-quark, we have

$$\langle \Gamma(\pm,\pm) \rangle = g^4 m_t E_\ell^0 |\Delta_W(p_W^2)|^2 (1 \pm \cos \theta_l) \times F(E_\ell^0), \langle \Gamma(\pm,\mp) \rangle = g^4 m_t E_\ell^0 |\Delta_W(p_W^2)|^2 (\sin \theta_l e^{\pm i\phi_l}) \times F(E_\ell^0).$$

where $\Delta_W(p_W^2) = \frac{1}{p_W^2 - m_W^2 + i\Gamma_W m_W}$

$$F(E_{\ell}^{0}) = \left[(m_{t}^{2} - m_{b}^{2} - 2p_{t} \cdot p_{l}) \left(|f_{1L}|^{2} + \Re(f_{1L}f_{2R}^{*}) \frac{m_{t}}{m_{W}} \frac{p_{W}^{2}}{p_{t}.p_{l}} \right) - 2\Re(f_{1L}f_{2L}^{*}) \frac{m_{b}}{m_{W}} p_{W}^{2} - \Re(f_{1L}f_{1R}^{*}) \frac{m_{b} m_{t}}{p_{t}.p_{l}} p_{W}^{2} \right]$$

In general,

$$\langle \Gamma(\lambda, \lambda') \rangle = (m_t E_\ell^0) |\Delta(p_W^2)|^2 g^4 A(\lambda, \lambda') F(E_\ell^0)$$

Angular distribution of lepton

Combining production and decay part, we have

$$d\sigma = \frac{1}{32 \Gamma_t m_t (2\pi)^4} \left[\sum_{\lambda,\lambda'} d\sigma_{2\to n}(\lambda,\lambda') \times g^4 A^{c.m.}(\lambda,\lambda') \right]$$

$$\times \quad dE_t \ d\cos\theta_t \ d\cos\theta_\ell \ d\phi_\ell$$

$$\times \quad E_{\ell} \ F(E_{\ell}) \ |\Delta(p_W^2)|^2 \ dE_{\ell} \ dp_W^2$$

and

$$\Gamma_t \propto \int E_\ell F(E_\ell) |\Delta(p_W^2)|^2 dE_\ell dp_W^2$$

Contribution from anomalous tbW couplings cancels between numerator and denominator, if $t \rightarrow bW$ is the only decay channel.

\Rightarrow Lepton angular distribution is independent of anomalous tbW interactions.

Energy distribution of lepton

The E_{ℓ} distribution (in the lab frame) depends both on

- anomalous *tbW* couplings ⇒ **new physics in** *t*-**decay**
- energy-angular distribution of *t*-quark ⇒ new physics in *t*-production

Energy distribution of lepton

The E_{ℓ} distribution (in the lab frame) depends both on

• anomalous *tbW* couplings ⇒ **new physics in** *t*-**decay**

energy-angular distribution of *t*-quark ⇒ new physics in
 t-production

The E_{ℓ}^0 distribution (in the top-rest-frame) depends only on the possible **new physics in** *t*-decay.

$$\frac{d\sigma}{dE_{\ell}^0} \propto \int E_l^0 F(E_l^0) \; |\Delta(p_W^2)|^2 \; dp_W^2$$

Independent of production mechanism of *t***-quark !!**

Polarized cross-sections :

$$\int \frac{d^3 p_t}{2E_t (2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \,\delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Polarized cross-sections :

$$\int \frac{d^3 p_t}{2E_t (2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \, \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Total cross-section :

 $\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$

Polarized cross-sections :

$$\int \frac{d^3 p_t}{2E_t (2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i (2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \, \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Total cross-section :

$$\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$$

Polarization density matrix :

$$P_{t} = \frac{1}{2} \begin{pmatrix} 1 + \eta_{3} & \eta_{1} - i\eta_{2} \\ \eta_{1} + i\eta_{2} & 1 - \eta_{3} \end{pmatrix}, \qquad \begin{aligned} \eta_{3} &= (\sigma(+, +) - \sigma(-, -)) / \sigma_{tot} \\ \eta_{1} &= (\sigma(+, -) + \sigma(-, +)) / \sigma_{tot} \\ i \eta_{2} &= (\sigma(+, -) - \sigma(-, +)) / \sigma_{tot} \end{aligned}$$

Polarization through leptonic decay of *t*-quark :

$$\frac{\eta_3}{2} = \frac{\sigma(p_\ell . s_3 < 0) - \sigma(p_\ell . s_3 > 0)}{\sigma(p_\ell . s_3 < 0) + \sigma(p_\ell . s_3 > 0)}$$

$$\frac{\eta_2}{2} = \frac{\sigma(p_\ell . s_2 < 0) - \sigma(p_\ell . s_2 > 0)}{\sigma(p_\ell . s_2 < 0) + \sigma(p_\ell . s_2 > 0)}$$

$$\frac{\eta_1}{2} = \frac{\sigma(p_\ell . s_1 < 0) - \sigma(p_\ell . s_1 > 0)}{\sigma(p_\ell . s_1 < 0) + \sigma(p_\ell . s_1 > 0)}$$

 $s_i \cdot s_j = -\delta_{ij} \qquad p_t \cdot s_i = 0$

For $p_t^{\mu} = E_t(1, \beta_t \sin \theta_t, 0, \beta_t \cos \theta_t)$, we have $s_1^{\mu} = (0, -\cos \theta_t, 0, \sin \theta_t), \ s_2^{\mu} = (0, 0, 1, 0), \ s_3^{\mu} = E_t(\beta_t, \sin \theta_t, 0, \cos \theta_t)/m_t.$

 η_2 : transverse polarization normal to the production plane. Simplest quantity to measure; requires reconstruction of *t*-production plane;

 η_2 : transverse polarization normal to the production plane. Simplest quantity to measure; requires reconstruction of *t*-production plane;

 η_1 : transverse polarization in the production plane. requires reconstruction of *t*-production plane and $\cos \theta_t$;

 η_2 : transverse polarization normal to the production plane. Simplest quantity to measure; requires reconstruction of *t*-production plane;

 η_1 : transverse polarization in the production plane. requires reconstruction of *t*-production plane and $\cos \theta_t$;

 η_3 : average helicity. requires reconstruction of *t*-production plane, $\cos \theta_t$ and E_t ;

 η_2 : transverse polarization normal to the production plane. Simplest quantity to measure; requires reconstruction of *t*-production plane;

 η_1 : transverse polarization in the production plane. requires reconstruction of *t*-production plane and $\cos \theta_t$;

 η_3 : average helicity. requires reconstruction of *t*-production plane, $\cos \theta_t$ and E_t ;

Angular distribution in lab frame can be used as a qualitative measure of the *t*-polarization.

Polarization through angular distribution

For demonstration, we chose $\gamma \gamma \rightarrow t\bar{t}$ process with/without Higgs exchange contribution.

 $m_{\phi} = 500 \text{ GeV}; \Gamma_{\phi} = 2.5 \text{ GeV},$ $S_t = 0.2, P_t = 0.4, S_{\gamma} = 4.0 + i \ 0.5 \text{ and } P_{\gamma} = 1.25 + i \ 2.0.$

Polarized ideal photon spectrum is used.

Assumptions :

- *t*-quark is on-shell
- anomalous *tbW* couplings are small
- *W*-boson is on-shell
- *b*-quark is mass-less and
- $t \rightarrow bW$ is the only decay channel for *t*-decay

Polarization through angular distribution

$$\eta_1 = 0$$
 and $\eta_2 = 0$

Polarization through angular distribution

Energy distribution

Energy distribution

Energy distribution

SUSY Higgs: $\gamma\gamma \rightarrow t\bar{t}$

CPX scenario

MSSM parameters	Values
aneta	3 - 40 (used for scan)
m_{H^+}	150-500 GeV (used for scan)
μ	2 TeV, $\Phi_{\mu} = 0$
M_1,M_2	200 GeV, $\Phi_{1,2} = 0$
M_3	1 TeV, $\Phi_3 = 90^{\circ}$
$m_{ ilde{q}, ilde{l}}$	500 GeV
$A_{t,b}$	1 TeV, $\Phi_{t,b} = 90^{\circ}$
$A_{ au}$	500 GeV, $\Phi_{\tau} = 90^{\circ}$

SUSY Higgs: $\gamma\gamma \rightarrow t\bar{t}$

Flat extra-dimensions: $pp \rightarrow t\bar{t}$

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

Signal channel in *pp* collision:

$$q\bar{q} \rightarrow V \rightarrow t\bar{t}$$

 $V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)}$

The pure SM backgound:

$$gg \to V \to t \overline{t}$$

All KK-excitations contribute to a resonance in $m_{t\bar{t}}$ distribution. The presence of *Z* and *Z*⁽¹⁾ is responsible for finite polarization of top quark.

Flat extra-dimensions: $pp \rightarrow t\bar{t}$

Flat extra-dimensions: $pp \rightarrow t\bar{t}$

For $M_{KK} = 2$ TeV, and $|m_{t\bar{t}} - M_{KK}| < 50$ GeV.

	$\sigma(pp \to t\bar{t})$ (fb)	P_t
SM	77.9	-1.33×10^{-3}
$SM + \gamma^{(1)}$	185	-2.55×10^{-4}
$SM + Z^{(1)}$	150	-3.26×10^{-1}
$SM + g^{(1)}$	1700	-6.13×10^{-5}
$SM + V_{KK}$	1900	-5.87×10^{-2}

ED: Weak resonance model

3

2.5

-1.5

-2

-2.5

-3

-3

0.5

-2.5

0.3

-1.5

-2

0.2

-1

0.1

-0.5

0

0

 A_{V}

-2 -1.5

-1 -0.5

0

Av

0.5

1

1.5

2

-1.5

-2

-2.5

-3

-3

-2.5

-0.4

0.3

2

2.5

3

-0.2

1.5

0.1

1

0.5

ED: Strong resonance model

 $f\bar{f}V := R_V P_R + L_V P_L$

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK}

For electro weak boson:

$$f_i \bar{f}_i V := (A_V T_3^{f_i} + B_V Q^{f_i}) Q_V(f_i) ; i = L, R$$

For strong boson:

$$f\bar{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A_{FB}^b anomaly thourgh $Z Z'^{(1)}$ mixing,
- can be probed at LHC upto $M_{KK} = 3$ TeV through polarization.

 $\Gamma_{g^{(1)}} = 627 \text{ GeV}, \Gamma_{Z^{(1)}} = 75 \text{ GeV}, \Gamma_{\gamma^{(1)}} = 137 \text{ GeV}.$

$$A_l = (\sigma(\cos\phi_l > 0) - \sigma(\cos\phi_l < 0)) / \sigma_{tot}$$

Lepton angular distribution is a **pure** probe of possible new physics in **any** process of *t*-quark production, independent of possible new physics in *t*-decay.

- Lepton angular distribution is a **pure** probe of possible new physics in **any** process of *t*-quark production, independent of possible new physics in *t*-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.

- Lepton angular distribution is a **pure** probe of possible new physics in **any** process of *t*-quark production, independent of possible new physics in *t*-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.
- Polarization of *t*-quark can be measured (quantitatively) through angular asymmetries of decay leptons.

- Lepton angular distribution is a **pure** probe of possible new physics in **any** process of *t*-quark production, independent of possible new physics in *t*-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.
- Polarization of *t*-quark can be measured (quantitatively) through angular asymmetries of decay leptons.
- Angular distribution of decay lepton in the lab-frame is a good qualitative probe of *t*-polarization; quantitatively better for negative polarizations.

- Lepton angular distribution is a **pure** probe of possible new physics in **any** process of *t*-quark production, independent of possible new physics in *t*-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.
- Polarization of *t*-quark can be measured (quantitatively) through angular asymmetries of decay leptons.
- Angular distribution of decay lepton in the lab-frame is a good qualitative probe of *t*-polarization; quantitatively better for negative polarizations.
- Top quark polarization can be probed at various colliders and it can be instrumental in discovering and characterising new physics.

Ongoing projets

- Spin/polarization measurement of new particles in their cascade decay. Look at azimuthal distributions in the lab frame.
- Likelyhood mapping of SUSY parameters space using MCMC.

Contact :

LAPTH, Annecy

Email : singh@lapp.in2p3.fr