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Abstract

External magnetic fields can have an effect on the electronic structure of molecules
when the field interaction strengths are comparable with Coulomb interactions. For
small atoms/molecules, magnetic field strengths of around 235 kT or 1 au can alter
the electronic spectra. In nature, white dwarfs and neutron stars have magnetic
fields of this order. The observed electronic spectra available from white dwarf stars
are strongly distorted by magnetic fields, and it is difficult to interpret them in
connection with atomic and molecular structure. In this project, we compute the
electronic spectra of molecules under a strong magnetic field using the random phase
approximation (RPA), also known as the linear response of Hartree-Fock theory or
time-dependent Hartree-Fock theory. Here our goal is not to accurately calculate
the excitation energies but to understand the modification induced by the magnetic
field compared to the zero-field case. The ground state is optimized in the presence
of an external magnetic field, and the excited states are obtained via linear response.
London atomic orbitals (LAOs) are employed to enforce gauge-origin invariance and
accelerate basis set convergence. We also compute the spectral intensities in order
to explore how the symmetric forbidden transitions become allowed in the presence
of magnetic fields which lift this symmetry. We try to justify the changes in the
electronic spectra at the level of orbital changes due to the magnetic field.
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Chapter 1

Introduction

1.1 Electronic Structure Theory

Nature has always fascinated humans. This leads us to understand the universe.
Since the discovery of the electron in 1896–1897 our great challenge was to under-
stand the electronic structure of atoms/molecules in order to define the behavior of
matter in the universe.

The fundamental basis for understanding materials and phenomena ultimately rests
upon understanding the electronic structure, which means that we must deal with
the interacting many-electron problem in diverse, realistic situations. The elec-
tronic structure of the hydrogen atom can be analytically solved. While the quan-
tum theory is not necessary for all systems, it is the most fundamental approach
we can adopt. Electronic structure theory describes the motion of electrons in
atoms or molecules. For predicting the electronic structure of complex molecules,
we use many approximation methods like Hartree-Fock(HF), density functional the-
ory(DFT), coupled-cluster theory(CC), etc.,

The Hamiltonian for many-electron molecule in atomic units can be defined as

Ĥ = −
N∑
i=1

1

2
∇2

i −
M∑

A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB

(1.1)

Here MA is the ratio of the mass of nucleus A to the mass of an electron, and ZA is
the atomic number of nucleus A. Laplacian operators ∇2

i ,∇2
A involve differentiation

with respect to the coordinates of the ith electron and Ath nucleus.The first term in
the equation. (1.1) is the operator for the kinetic energy of the electrons; the second
term is the operator for the kinetic energy of nuclei; the third term represents the
Coulomb attraction between electrons and nuclei; the fourth and fifth terms repre-
sent the repulsion between electrons and nuclei respectively.

Since electrons are so much lighter and therefore faster than nuclei, one can consider
the electrons in a molecule to be moving in the field of fixed nuclei. This is known
as the Born-Oppenheimer Approximation. So the term in equation (1.1), which
represents the kinetic energy of the nuclei, is considered a constant, and adding
a constant to the Hamiltonian operator only added to the eigenvalues and has no
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effect on the eigenfunctions. The Electronic Hamiltonian describing the motion of
N electrons in the field of M point charges can be defined as

ˆHelec = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
(1.2)

The Schrodinger equation involving the electronic Hamiltonian,

ˆHelecΦelec = ϵelecΦelec (1.3)

The approximations on the Hamiltonian, ˆHelec and the wavefunction, Φelec necessary
to make equation 1.3 solvable, albeit numerically, constitute the various electronic
structure theories in use today. The electronic structure problem is then to solve.
In this thesis, we have dealt with a simple orbital picture and thus used only the
Hartree-Fock Theory.

1.1.1 Hartree-Fock Theory

In computational physics and chemistry, the Hartree–Fock (HF) method is a method
of approximation for the determination of the wave function and the energy of a
quantum many-body system in a stationary state. The Hartree–Fock method often
assumes that the exact N-body wave function of the system can be approximated
by a single Slater determinant (in the case where the particles are fermions) or
by a single permanent (in the case of bosons) of N spin-orbitals. Spin orbitals
are obtained by solving the Hartree-Fock equation( equation(1.4)), which involves
an effective one-body operator called the Fock operator in lien of the many-body
Hamiltonian(equation(1.2)). By invoking the variational method, one can derive a
set of N-coupled equations for the N spin orbitals. A solution of these equations
yields the Hartree–Fock wave function and energy of the system.
Hartree-Fock equation is

f(x1)Xi(x1) = ϵiXi(x1) (1.4)

Where f(x1) is the fock operator. The Fock operator can be separated into a
true-one electron part,h(x1) and effective one electron operator J (Coloumb) and
K(Exchange)

f(x1) = h(x1) +
∑
j

Jj(x1)−Kj(x1) (1.5)

After expanding each spin orbital in a basis, the Hartree-Fock Roothan equation is
obtained. And Hartree-Fock Roothan equation is defined as∑

ν

FνµCνi =
∑
i

∑
ν

SνµCνi (1.6)

FC = SCϵ (1.7)

where S is an overlap matrix of basis function,Cνi are the basis coefficient of molec-
ular orbital i and ϵ is the diagonal matrix of the orbital energy ϵi

Here we use Linear response of hartree-fock to calculate the excitation energies.
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1.2 In the presence of a Magnetic Field

1.2.1 Electronic Hamiltonian in Magnetic Field

When a molecule is placed in a external magnetic field B associated with a vector
potential A such that B⃗ = ∇⃗ × A⃗, the kinetic energy term is modified. In the
presence of an additional scalar potential ϕ, we get

Ĥ =
π2

2m
− eϕ (1.8)

Where π = p+ eA

p = −iℏ∇+ eA (1.9)

Here we assume coloumb gauge

∇A = 0

Now proceeding,

ĤΨ = { π
2

2m
− eϕ}Ψ (1.10)

π2Ψ = (p+ eA)(p+ eA)Ψ (1.11)

= p2Ψ+ eApΨ+ epAΨ+ e2A2Ψ (1.12)

= p2Ψ+ eA(pΨ) + e(pA)Ψ + eA.(pΨ) + e2A2Ψ (1.13)

= p2Ψ+ 2eA(PΨ) + e(p.A)Ψ + e2A2Ψ (1.14)

= p2Ψ+ 2e(A.p)Ψ + e2A2Ψ (1.15)

Substituting equation (1.7) in (1.1) and including potential energy terms

Ĥ = ΣNel
i=1

1

2m
p2i︸ ︷︷ ︸

1

− e2

4πϵ
Σk,i

Zk

rik︸ ︷︷ ︸
2

+
e2

4πϵ
Σi>jΣj

1

rij︸ ︷︷ ︸
3

− eΣiϕi︸ ︷︷ ︸
4

+Σi
e

m
(Aipi)︸ ︷︷ ︸
5

+
e2

2m
ΨiA

2
i︸ ︷︷ ︸

6

+B.S︸︷︷︸
7

(1.16)
Here this terms represents
i, j → electron index
k → Nuclei index
rik → electron i & nucleus k’s distance
rij → electron i & j’s distance
1 → Kinetic energy of electrons
2 → Electron nuclei attraction
3 → Electron-Electron repulsion
4 → Interaction of electron with scalar potential
5 → Electron interaction on the vector potential at it’s own position.(That is why
i on the vector potential also), i.e., paramagnetic interaction
6 → Interaction with electron with square of vector potential, i.e., diamagnetic in-
teraction
7 → Interaction of electron spin and Magnetic field
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Separating the magnetic terms we get:[6]

Ĥ = Ĥ0 + Atot(r) · p̂︸ ︷︷ ︸
Orbital Paramagnetic

− Btot(r) · Ŝ︸ ︷︷ ︸
Spin Paramagnetic

+
1

2
Atot(r)

2︸ ︷︷ ︸
Diamagnetic

(1.17)

Here B·S represents the spin-Zeeman interaction and in the Coulomb gauge vector
potential, Atot(r) =

1
2
B × (r - g).Simplifying equation (1.18) only in Z-direction we

get the final Ĥ as equation(1.17). Here 1
2
B·L0 comes from Atot(r)·p and is called

the orbital-Zeeman interaction,where L0 is orbital angular momentum.

Electrons interact with a magnetic field by virtue of their orbital motion, which
is called the orbital-Zeeman effect, as well as due to their spin, which is called the
spin-Zeeman effect. In this section, we focus on a one-electron system to highlight
some crucial aspects of these interactions. The one-electron molecular Hamiltonian
in the absence of a magnetic field (a.u.):

H0 =
1

2
p2 + V, p = −i∇

In a magnetic field, B = ∇ × A, the kinetic-energy operator is modified and spin
added:

H =
1

2
(p+ A).(p+ A)−B.S + V

For a uniform magnetic field in the z direction, expansion of the kinetic energy
gives:

H = H0 −
1

2
BLz +BSz +

1

8
B2(x2 + y2) (1.18)

where Lz = xpy − ypx can be identified as the orbital angular momentum. The
paramagnetic Zeeman terms BLz and BSz split three components of the energy
levels depending on Lz and Sz values of the state. The Quadratic term in equa-
tion(1.17) is the diamagnetic term, which always raises the energy. To exist in the
lowest energy state, x2 + y2 is minimized to reduce the energy. So atoms become
squeezed in that plane. This can be seen in the He atom in figure 1.1, where figure
1.1a is the 1s orbital when the magnetic field is zero, and it is spherical. But when
we are applying a magnetic field in the X-direction, the spherical orbital becomes
elongated in the X-direction.

Ĥ =
1

2
π̂2 − v(r) +

1

r
+Btot(r) · Ŝ; π̂ = p̂+Atot(r)

1.2.2 Gauge origin invariance

Non-relativistic molecular Hamiltonian in a magnetic field is defined as

H = H0 +A(r) · p+B(r) · s+ 1

2
A(r)2

Now Vector potential of a uniform field, B is given by:

B = ∇×A = const⇒ Ao(r) =
1

2
B× (r−O) =

1

2
B× rO

10



(a) He orbital 1s with B=0

(b) He orbital 1s with B=0.1 au along X-axis

Figure 1.1: He 1s orbital symmetry changes with applying magentic field along X-
axis
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The gauge origin, O, is arbitrary ! A change of origin is a gauge transformation.
A general gauge transformation can be written as:[1],[4]

A′ = A+∇f , ϕ′ = ϕ− ∂f

∂t

This is equivalent to a unitary transformation of (H-i∂/∂t) and to continue to satisfy
the Schrödinger equation, ψ’ ⇒ ψ.

(H ′ − i
∂

∂t
) = e−if (H − i

∂

∂t
)eif , ψ′ = e−ifψ

From this transformation all observables remain unchanged.
London Atomic Orbital(LAOs)

Since Gauge origin is arbitrary both energy and wavefunction is dependent on Gauge
origin. in order to make this gauge invariant we can use London Atomic Orbitals.It
is of the form [2][6]

Wlm(rk, B,G) = e
i
2
[B×(G−k)].rχlm(rk)

Choices of gauge origin (O or G) for the external vector potential are related by
gauge transformations:

AG(r) = AO(r)−AO(G) = AO(r) +∇f, f(r) = −AO(G) · r

The exact wave-function transforms accordingly as:

ψG
exact = e−if(r)ψO

exact = eiAO(G)·rψO
exact = ei

1
2
B×(G−O)·rψO

exact

This behaviour can be built into the atomic orbitals (AO)s. Each AO responds
correctly to the applied magnetic field and this type of transformed AOs Called
London orbitals or GIAOs (Gauge Including AOs)

1.2.3 Hartree-Fock theory in magnetic field

When the orbital becomes complex, if there is a uniform magnetic field, correct
flavor would be to use Unrestricted Hartree-Fock (UHF). If this was done using
Restricted Hartree-Fock (RHF), then we only get orbital-Zeeman interaction. If it’s
a non-uniform magnetic field, this was done by general Hartree-Fock (GHF). Each
orbital is associated with mixed spin wavefunction.

RHF is used for closed-shell systems, and its common spatial orbital is associated
with a pair of α and β spin functions. And it is not suitable for Spin-Zeeman
interaction. For UHF, it is used for an open-shell system, and the spatial parts have
the freedom to be different. There is spin breaking that occurs, so the operator S2 is
not conserved due to spurious spin breaking, whereas Sz conserved. This is suitable
for the calculation of Spin-Zeeman in uniform B. In the case of GHF, it’s used when
the system is open, and its Orbitals are not factorizable into spatial and spin parts.
This is suitable for Spin-Zeeman in all B.
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Chapter 2

Electronic Excitation in a
Magnetic Field

In this chapter, we use a simple methodology to compute singly excited states of
closed-shell systems using linear response theory for a Hartree-Fock function. Linear
response is a framework that is generally applied to compute the properties of a
system. The simplest application of linear response is the computation of excitation
energies which we shall use in our project. Our goal is to identify and understand
the modulation of electronic excitation energies by a strong external magnetic field.
While excitation energies are notoriously sensitive to electron correlation and require
high levels of theory to reproduce accurately, the qualitative changes caused by the
magnetic fields are relatively insensitive. We have thus chosen this simple approach
for our initial exploration.

2.1 Linear Response of Hartree-Fock Theory

Here our goal is to calculate the properties of a system when there is a pertur-
bation, whether time-independent or dependent. Perturbation theory is the most
straightforward way to approach this problem. Response theory is a general ap-
proach equally applicable to classical and quantum systems that is closely related to
perturbation theory but follows a different language rooted in classical mechanics as
developed by Kubo. When the external perturbation is small enough such that the
change in the wavefunction of the system is linear with respect to the perturbation
strength, the theory is called linear response theory. In the case of time-dependent
perturbations, one may understand this in the frequency domain. If the system
starts oscillating with frequency, ω under a perturbation of frequency ω - this would
constitute a linear response of the system.

In this report, we use linear response theory to compute excitation energies which
are basically the poles of the response function and independent of the strength of
the perturbation. Thus, it is sufficient to restrict our theoretical development to a
time-independent framework. While it is not the traditional way to derive linear
response, the implementation we have used in our computations is based on the
working equations derived herein.

Time independent formulation of Linear Response Theory

Let |gs⟩ → Exact ground state,

13



X̂ → Excitation Operator,
X̂|gs⟩ → Exact excited state
Eai → Excitation operator from state i to a

Ĥ|gs⟩ = E0|gs⟩

⟨gs|Ĥ = E0⟨gs|

⟨gs|ĤÊai|X⟩ = E0⟨gs|Êai|X⟩ (2.1)

ĤX̂|gs⟩ = ExX̂|gs⟩

Ĥ|X⟩ = Ex|X⟩

EaiĤ|X⟩ = ExEai|X⟩

⟨gs|ÊaiĤ|X⟩ = Ex⟨gs|Êai|X⟩ (2.2)

equation (2.2)-equation(2.1) =⇒

⟨gs|[Êai, Ĥ]|X⟩ = (Ex − E0)⟨gs|Êai|X⟩

⟨gs|[Êai, Ĥ]|X⟩ = ω⟨gs|Êai|X⟩

where ℏ = 1

⟨gs|[Êai, Ĥ]X̂|gs⟩ = ω⟨gs|ÊaiX̂|gs⟩

Now,

⟨gs|X̂ = ⟨X†gs| = 0

∴ substracting ⟨gs|X̂[Êai, Ĥ]|gs⟩ from LHS and ⟨gs|X̂Êai|gs⟩ from RHS
we get,

⟨gs|[[Êai, Ĥ], X̂]|gs⟩ = ω⟨gs|[Êai, X̂]|gs⟩ ∀a, i (2.3)

Equation(2.3) can be regarded as the equation for computing the excitation energy
w. To obtain the working equation for RPA we make the following approximations.

• Replace exact ground state with Hartree-Fock ground state
|gs⟩ → |HF ⟩

• X̂ as single excitation operator
X̂ → Ŷ + Ẑ
where Ŷ → Single excitation operator & Ẑ → Single de-excitation operator

• If X̂ = Ŷ Then this is called Tamm-Dancoff approximation (TDA)

14



2.2 Computation using London

2.2.1 Procedure

The HF linear response method, as outlined above, is implemented in the London
program package. London was the first quantum chemistry software developed for
the direct computation of molecules in an external magnetic field. A sample input
file is reproduced below. This particular input file initiates a UHF computation of
H2O ground state and the five lowest excitation energies. The HF computation is
followed by a response calculation.

1 scf{

2 spin -symmetry -constraint = Restricted Hartree -Fock

3 linear -dependence -tol = 1e-10

4 uhf -spin -projection = 0

5 disable -spin -zeeman -in -fock -matrix = no

6 noisy -init -guess = no

7 min -scf -iterations = 0

8 max -scf -iterations = 160

9 use -density -fitting = no

10 use -admm = no

11 analyze -using -dft -grid = no

12

13 diis{

14 convergence -tolerance = 1e-10

15 subspace -dimension = 7

16 diagonalization -temperature = 0

17 }

18 }

19

20 rsp{

21 number -of -roots -requested = 5

22 root -selection -method = energy

23 excitation -basis = MObasis

24 starting -guess = UnitGuess

25 solver_choice = GenEig

26 precondition = false

27 initial -subspace -dimension = 100

28 maximum -subspace -dimension = 800

29 convergence -tolerance = 1e-10

30 max -rsp -iterations = 200

31 }

32

33

34 system{

35 molecular -charge = 0

36 correlation -model = rsp

37

38 hamiltonian{

39 electron -mass = 1

40 speed -of -light = 137.036

41 adiabatic -connection -lambda = 1

42 nuclear -charge -distribution = point charge

43

44 magnetic -field = (0, 0, 1.0)

45 gauge -origin = (0, 0, 0.1173)

46

15



47 linear -magnetic -field = {(0.0 , 0, 0), (0, 0, 0), (0, 0, 0)}

48 linear -magnetic -origin = (0, 0, 0)

49

50 electric -field = (0, 0, 0)

51 electric -origin = (0, 0, 0)

52 linear -electric -field = {(0, 0, 0), (0, 0, 0), (0, 0, 0)}

53

54

55 # data on state flags lost , output incomplete here

56 use -london -orbitals = yes

57 gto -contraction -type = normalized primitive

58 basis = aug -cc-pVDZ

59 # geometry

60 charge = 1.0

61 H 0.3707 0.0000 0.0000

62 H -0.3707 0.0000 0.0000

63 }

64 }

Listing 2.1: London input file of H2 molecule with magnetic field
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2.3 Results and Discussions

As discussed earlier, magnetic fields have multiple effects on electronic states de-
pending on their L and S value, as well as the relative orientation of the field and
the atom/molecule. We have chosen three representative systems with decreasing
symmetry to elucidate these effects. In this chapter, we study the energy changes.
The effects on the intensity of the excitation will be studied in chapter 3. We com-
pute a few of the lowest singly excited states in each illustrative case using the HF
linear response method as described in chapter 2.

2.3.1 He atom

(a) Hartree-Fock ground state energy

(b) Excited State Energies

Figure 2.1: Variation of the electronic states of He atom placed in strong magnetic
field

The He atom is the smallest closed-shell atom. We take it as an example of a
spherically symmetric system. In this case, we carry out the unrestricted HF(UHF)
ground state computation followed by a linear response. Due to the unrestricted
nature of the excitation operators, we can access the singlet and triplet manifold of
excited states. The aug-ccpVDZ basis is used. Since He is spherically symmetric,
applying the magnetic field direction doesn’t matter. Operationally we are consid-
ering the magnetic field along X direction with a strength range from 0 to 1 au.
Since it is a two-electron system and electron nuclei interaction is more, we need
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high magnetic field strength to perturb the system. That is why we use magnetic
field strength up to 1 au. The figure 2.1a is the Hartree-Fock ground state energy
varying with the strong magnetic field. Excited-state energies are computed by
adding the computed excitation energy to the HF ground state value at each field
strength. These are plotted in the figure 2.1b. 3S, the first excited state, which is
singly degenerate and thus doesn’t split under a strong magnetic field. Similarly, 1S
is also not degenerate. The effect of the Spin-Zeeman term is clearly visible on the
3S state, which dips in the magnetic field and dominates the diamagnetic term. On
the other hand, in the absence of any paramagnetic interaction 1S curves paraboli-
cally up under He quadratic diamagnetic term. For the case of 3P,ml=-1 ,3P,ml=0
, 3P,ml=+1 while B=0 their energies are same but on applying the magnetic field
three different energies are obtained for ml = −1, 0, 1 on account of He Orbital-
Zeeman term. In addition to the Spin-Zeeman term lowering the energy of the three
3P states the Orbital-Zeeman term causes additional lowering of 3P,ml=-1, raises
3P,ml=+1 and doesn’t affect 3P,ml=0. In figure 2.1b we can see that the energy of
some states increase, including the initial ground state(HF) (Figure2.1a) and some
decrease resulting in multiple crossings of the energy states with increasing magnetic
field strength. In the figure 2.2 which reproduces from [5] we see that after a while,
one of the excited states with paramagnetic property will cross with the ground state
and become the new ground state at a certain magnetic field. This crossing point is
sensitive to the basis set and electron correlation. Our computations in figure (2.1)
in aug-cc-pVDZ basis indicates a crossing at B > 1 au while similar computations
in aug-cc-pCVQZ basis in figure 4.14 shows a crossing at B ≈ 0.48 au.

.5

Figure 2.2: Spectrum of the He atom subject to uniform magnetic fields. The ground
and excited states are computed using Hartree-Fock (GHF) and RPA, respectively,
with the Luaug-cc-pCVQZ basis [5]
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2.3.2 H2 Molecule

The H2 molecule is taken as a representative molecule for homonuclear diatomics.
The molecule has a centre of symmetry and belongs to the D∞h point group. Two
relative orientations of the field are possible - Parallel and perpendicular to the bond
axis (taken as X-axis here).

We have carried out RHF calculations on H2 followed by linear response using
spin restricted/conserving excitation operators. Thus we have accused only the
singlet manifold of excited states subject only to the orbital-zeeman effect. For the
case ofH2 molecule in figure 2.3 and figure 2.4, HF is the Hartree-Fock ground state.
In the presence of strong magnetic field the state shows increase in energy. Beyond
a certain value of magnetic field strength the ground state will cross with one of the
excited state that excites state will become the new ground state. From the figure
we can see that by applying the magnetic field irrespective of the direction in which
it applied, the states becomes degenerate and formed two doubly degenerate state
of H2 molecule. When the field direction is in the X-axis (figure 2.3) is parallel to
the bonds one of the doubly degenerate π states of Πu symmetry initially decreases
in energy and crosses two Σ states. 1Σg cross with 1Σu becomes the third excited
state.

When the field direction is in Z-axis figure (2.4), the one of the doubly degen-
erate π state which is Πu initially decrease in energy and cross with Σg state of
H2 molecule. With increasing magnetic field state energies of every level eventually
starts increasing as the term quadratic in vector potential, A2, starts to dominate.
This is called the quadratic Zeeman effect.

2.3.3 H2O as an Illustrative case

Since H2O is a larger molecule than the two previous examples, the effect of the
magnetic field can be seen with weak fields. Here we take 10 points between [0,0.1]
au. We carried out UHF calculations followed by the linear response with the
excitation operator, which allows spin-flipping. Thus, a single excitation manifold
involving both singlet and triplet states is obtained.
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Figure 2.3: Spectrum of the H2 molecule subject to uniform magnetic fields in
X-direction parallel to the bond with the position coordinates of H atoms are in (-
0.1643,0,0),(0.1643,0,0). The ground and singlet excited states are computed using
Hartree-Fock (RHF) and RPA respectively with the aug-cc-pVDZ basis
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Figure 2.4: Spectrum of the H2 molecule subject to uniform magnetic field in Z-
direction perpendicular to the bond with the position coordinates of H atoms are
at (-0.1643,0,0),(0.1643,0,0). The ground and singlet excited states are computed
using Hartree-Fock (RHF) and RPA respectively with the aug-cc-pVDZ basis
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Figure 2.5: Four lowest state energies of H2O Molecule in a YZ-plane and having
Z-axis as C2v axis of symmetry plotted against BX using basis aug-cc-pVDZ. X-axis
represents Magnetic field along the X-axis represents state Energy
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Figure 2.6: Four lowest state energies of H2O Molecule in a YZ-plane and having
Z-axis as C2v axis of symmetry plotted against BY using basis aug-cc-pVDZ. X-axis
represents Magnetic field along the Y-axis represents state Energy
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Figure 2.7: Four lowest state energies of H2O Molecule in a YZ-plane and having
Z-axis as C2v axis of symmetry plotted against BZusing basis aug-cc-pVDZ. X-axis
represents Magnetic field along the Z-axis represents state Energy
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H2O is taken to have the σv plane as YZ-plane and Z-axis as the C2 axis. We
apply the magnetic field in three separate axes and determine the changes. All three
directions are in-equivalent for H2O. H2O ground state is diamagnetic for all direc-
tions of the field but to different extents. Experiments typically yield vibrationally
and rotationally averaged values that do not reflect directionality. The lowest singlet
excited state,1B1, is also diamagnetically for all directions of the field. The 1A2 state
shows interesting behavior. For all directions of the field, it shows an initial param-
agnetic response that must arise from the orbital Zeeman interaction. Eventually,
as discussed before, the quadratic Zeeman term causes it to become diamagnetic
beyond a certain field strength. It is also this 1A2 state, which is electric-dipole
forbidden in zero field but gains in intensity when the field breaks the C2v point
group symmetry of the molecule, as we shall see in chapter 3. For the 3B1 and 3A2

states, the spin-Zeeman paramagnetic effect dominates initially, but the orbital dia-
magnetic effect gradually damps it out. The upturn towards diamagnetic behavior
can already be anticipated from magnetic field range from 0 to 0.1 au plot.

2.4 Conclusions

Here from the graphs, we came to the conclusion that a strong magnetic field leads
to the splitting of degenerate excited states due to the lowering of symmetry. The
electronic state, which is the GS can change with changing field strength. With an
increase in the magnetic field, a state of higher multiplicity rapidly comes down and
becomes a new ground state. Also, we can see from the plots that the excited states
were found to be more sensitive to the applied magnetic field.
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Chapter 3

Spectral Intensity

3.1 Theory

Considering the light matter interaction a general Hamiltonian can be written as

H = Hmatter +HLight +HLight−Matter

Representation of light in terms of a vector potential is

A(r, t) = A0ϵ⃗.p.e
i(kr−wt) − A0ϵ⃗.p.e

−i(kr−wt)

Where k is the wave vector and ϵ⃗ is the polarization vector.

Ĥ =
∑
i

1

2mi

(p̂− qiA⃗)
2

Ĥ = Ĥ0 −
∑
i

qi
2mi

(p⃗i.A⃗+ A⃗.p⃗i) +
∑
i

qi
2mi

|A⃗|2

where H0 is the unperturbed Hamiltonian. Ignoring the quadratic term we get the
Electric Dipole Hamiltonian

Ĥ = Ĥ0 −
∑
i

qi
2mi

(p⃗iA⃗+ A⃗p⃗i)

This can be concisely written as:

Ĥ = Ĥ0 + V (t)

V (t) =
q

m
(A0ϵ⃗.p.e

−iwt − A0ϵ⃗.p.e
iwt)

Under the long wavelength approximation V (t) can be represented as

V (t) =
∑
i

qi
mi

(ϵ.pi)
E0

ω
sin(ωt)V (t) = V0sin(ωt)

Here we assume that if wave length of light, λ >>molecular dimension, then

k =
2π

λ
→ 0
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Rate of transition from l → k electronic states can be then derived via time-
dependent perturbation theory and is given by

Wkl =
π

2ℏ
|Vkl|2[δ(Ek − El − ℏω) + δ(Ek − El + ℏω)]

where
Vkl = −iE0

ωlk

ω
⟨k|ϵ̂.µ̂|l⟩

Where µ̂ being the electic dipole moment operator and the electronic transition
occurs when ℏω = ∆Ekl. At this point the oscillator strength f for an electric
dipole transition in dipole length approximation is : [5]

fl =
2

3
· △E| < 0|

N∑
i=1

ri|Xk > |2 (3.1)

and in velocity representation it is

fv =
2

3△E
| < 0|

N∑
i=1

πi|Xk > |2 (3.2)

where π = P̂ + Atot

fl - Oscillator strength in the length gauge
fv - Oscillator strength in the velocity gauge

The length and velocity expressions for oscillator strength are equivalent for exact
eigenstates of the Hamiltonian. In principle, they are inequivalent for approximate
methods and finite basis sets. For certain special cases such as Hartree-Fock, linear
responses have been shown to be equivalent in the complete basis set limit. Their
equivalence for complex orbitals, as in our case, has been numerically demonstrated
in [3]

The oscillator strength is the theoretically computed quantity that indicates the
intensity of absorption in electronic spectroscopy. The computation of oscillator
strength in the context of electronic spectra computations in a magnetic field is
especially interesting as it is a marker of symmetry breaking. Uniform magnetic
fields can be placed in various directions relative to the symmetry axes and planes
of the molecule to break its point group symmetry. This would result in formerly
forbidden transitions becoming allowed. The degree to which it occurs depends
greatly on the nature of the excited state, and this can be a beautiful indicator of
the sensitivity of various states to magnetic interactions. Furthermore, although
beyond the scope of this report, non-uniform magnetic fields can also make spin
forbidden transitions progressively allowed with increasing non-uniformity in the
field.

3.2 Computational Studies

The high atomic symmetry of the low-lying excited states of He atom can not be
broken by uniform fields, so we do not present results for it here. The breaking of
the center of symmetry is demonstrated in H2. H2O is used as an example when all
three directions of the field have inequivalent effects.
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H2 Molecule

H2 molecule has a center of symmetry and belongs to D∞h point group. As men-
tioned in the section 2.3.2 we are computing the RHF on H2 followed by linear
response using spin restricted/conserving excitation operator. Thus we only obtain
the singlet states when applying the magnetic field along the bond axis(X-axis) and
perpendicular(Z-axis).

When magnetic field along the bond axis, in figure 3.1a we observe three non-
zero spectral intensities in length gauge from ground state, 1Σg to excited states, 1Σu

and 1Πu (doubly degenerate) respectively and when magnetic field is perpendicular
to the bond axis, in figure 3.2a. The spectral intensities in the velocity gauge when
magnetic field along the bond axis and perpendicular to the bond axis are shown in
figures (3.2a) and (3.2b), respectively. Although the g/u symmetry of H2 is broken
by the field - this effect is very small, at least up to B=1 au, and effects on the
spectral intensities are insignificant.
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(a) Spectral Intensity in length gauge. Mag-
netic field along X-axis(Bond axis)

(b) Spectral Intensity in length gauge. Mag-
netic field along Z-axis(Perpendicular to the
bond axis)

Figure 3.1: Spectral Intensity in length gauge B

29



(a) Spectral Intensity in velocity gauge. Mag-
netic field along X-axis(Bond axis)

(b) Spectral Intensity in velocity gauge.
Magnetic field along Z-axis(Perpendicular to
the bond axis)

Figure 3.2: Spectral Intensity in velocity gauge
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H2O Molecule

For water molecule we already calculated the state energies of four excited states.
Now we are computing the electric dipole oscillator strength of H2O by applying
field independently in each X,Y,& Z axes. The σv plane of H2O molecule is YZ-plane
and the Z-axis is the C2 axis.

(a) Transition from 1A1 to 1A2 when oscilla-
tor strength is in length gauge

(b) Transition from 1A1 to 1A2 when oscilla-
tor strength is in velocity gauge

Spectral intenisty changes with field for transition from ground state 1A1 to
excited state 1B1 and to 1A2 in are shown in figure 3.4 and figure 3.3a. 1A1 → 1A2

is electric dipole forbidden. However, Figure(3.3b) shows the intensity growing with
increasing field strength. This means there is an transition which wasn’t allowed
before is getting transitioned by applying a strong magnetic field.

From the plots, the transition moment change is more when the applied magnetic
field direction is perpendicular to the σv plane of H2O i.e, for the transition from
A1 → A2 is higher for magnetic field applied along the X-direction. This is because
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the C2 axis and one of the σV plane of symmetry are lost and A1 → A2 transition
becomes allowed. Even for the magnetic field in Y-direction, it shows transition,
but the higher transition is for the magnetic field in the X-direction.
From the velocity gauge data shown in the figure 3.4 we obtain almost similar

Figure 3.4: Transition from 1A1 to
1B1 when oscillator strength is in velocity gauge

result as that from length gauge data. The value of intensities are different because

• We are using Finite basis

• Computing method is approximate

As going to the large basis set length and velocity gauges gives same result.

In conclusion, with the presence of a strong uniform magnetic field, there is a pos-
sibility of forbidden transition becoming allowed by the loss of symmetry.
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Chapter 4

Orbital Analysis of Excitation
Spectra

The intensity of an electronic excitation transition is governed by various factors.
Primary among them is the Frank-Condon principle. Ground and excited states
typically have different equilibrium geometries. However, since an electronic transi-
tion is too fast for the nuclei to rearrange, the transitions are vertical, and excited
electrons go to whichever vibrational level is vertically available to them. It is this
vertical excitation energy that we compute here. Moreover, peak widths and vi-
brational structure of the spectrum are not considered. While there are standard
procedures to take these into account, we deemed it unnecessary to carry out these
procedures for the purpose of this project because our motive here is not to con-
struct accurate spectra but to understand the mechanisms through which magnetic
fields affect spectra and establish the issues to be considered when trying to explain
the spectral shifts induced by the fields. We have thus chosen the simplest possible
systems and looked at the simplest excitations. Further improvements and studies
of complex systems may be desirable, but our current understanding is insufficient
to handle them. In the early chapters, we have computed peaks and intensities of
electronic spectra and seen how the peak positions and heights change under a mag-
netic field. The goal of this chapter is to analyze the reason behind these changes at
the orbital level. Recall that the orbitals, Φ are optimized via Hartree-Fock theory
in the presence of an external field. The use of London orbitals to ensure gauge-
origin invariance makes them complex. We will thus plot Φ∗

iΦi, the so-called orbital
density, in all cases. We accept that the Frank-Condon overlap of the vibrational
levels between which the transition is occurring will have an additional impact on
the intensity and will be necessary to compare with an experimental spectrum in
principle. Leaving this aside, the spectral intensity depends on the orbitals involved
in the transition. The orbital picture is only a simple model and may well fail for
highly correlated states, but it has been found to provide reasonable justification for
low-lying purely valence excitations in the zero-field situation. We shall assume for
the moment that this fact will continue to hold in the presence of a field.
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4.1 Methodology for Plotting

The molecular orbitals are obtained on a customizable grid from the LONDON
program. As the spatial extent of the orbitals is not known a priori, some amount of
trial and error is involved. We have then developed a Matlab script to read the data
for the complex orbitals Φi, compute ΦΦ∗ at each grid point, and plot the orbital
densities as a color gradient. The orbitals are labeled with their zero-field names
and symmetry labels, although their symmetry is reduced in the field for ease of
reference. Three field strengths B = 0 , B = 0.1 and B = 1 au are plotted. The
weak field plots are necessary to correlate with the zero-field orbitals in terms of
their energies as the orbital gets largely scrambled as the field increases.

It is important to note that in LONDON, the orbitals like p,d, etc which are
complex in general, are not recombined to real functions. Thus the labelling used
is p+1, p0, p−1,etc and they are randomly oriented in space. On the application of a
magnetic field, they get oriented.

In this project, we have only studied these orbital density plots visually. However,
to identify certain subtle effects and to quantitatively assess the changes, we plan on
calculating some numerical quantities, such as overlap with zero-field orbitals, etc.,
in continuation of this work. This would also help us to study more complicated
systems where visual analysis will not suffice. Even in these simple cases, the changes
in some of the orbitals are not visually apparent.

4.2 Results and Conclusions

We have studied the simplest closed-shell atoms – He, Be, and Ne – and the simplest
molecule – H2 and plotted the orbital densities of the occupied orbitals and a few
of the lowest virtual unoccupied orbitals in the following sections. The aug-ccpVDZ
basis was used in all cases. The basis functions were taken to be uncontracted as
the contraction coefficients are optimized for the zero-field optimization and would
bias the results. The occupied orbitals are directly modified due to the presence of
the magnetic field in their Fock operator, while the virtuals are modified due to the
requirement of orthogonality of the orbitals.

4.2.1 Atomic Orbitals

The s and p orbitals of three closed-shell atoms - He, Be, and Ne are plotted in
Figs. 4.1a to 4.3f both without and with a strong magnetic field. Very little change
is noted in the s orbitals except for a little contraction of density. Only the 2s orbital
of Ne shows a large decrease in size. This could be a basis effect as the absence of
basis functions of higher angular momentum for the core reduces the flexibility of the
1s orbitals to adapt to the field. We are currently investigating this aspect further.
The 2p−1 orbital of Ne is randomly oriented when B=0 as seen in Fig. 4.3e but gets
aligned along the field when B=1 au as seen in Fig. 4.3f.
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(a) 1s in B=0 (b) 1s in B=1 au

Figure 4.1: He occupied orbitals

(a) 1s in B=0 (b) 1s in B=1 au

(c) 2s in B=0 (d) 2s in B=1 au

Figure 4.2: Be occupied orbitals
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(a) 1s in B=0 (b) 1s in B=1 au

(c) 2s in B=0 (d) 2s in B=1 au

(e) 2p−1inB = 0 (f) 2p−1inB = 1au

Figure 4.3: Ne occupied orbitals
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4.2.2 He atom

The lowest singlet excited state of the He atom is 21S with dominant contribution
from 1s→2s excitation. The excitation energy is found to increase with the increasing
magnetic field. In Fig. 4.4, we see that due to only diamagnetic interaction, the
energies of all the s-orbitals are raised. The 2s orbital energy rises more sharply than
1s and even crosses the 2p−1 and 2p0 orbitals at B=1 au. Since the orbital energy
difference is the first approximation to the excitation energy, it is not surprising
that the 11S→21S excitation energy increases. However, this is an electric dipole
forbidden transition, so we do not obtain a spectral intensity plot. The 3S excited
state is paramagnetic in B=[0,1 au] for He on account of the dominating spin-Zeeman
term, and thus, the excitation energies decrease in spite of the diamagnetism of the
s-orbitals. These transitions are spin-forbidden. The 1s orbital does not change
much in a field, but we can see from Fig. 4.5 that the 2s orbital is significantly
contracted at B=1 au vs B=0. Similarly, in Fig. 4.9 we see a contraction in the
3s orbital. We find a correlation between the shrinking of orbital density and the
increase in energy of the s-orbitals.

The 3P excited states have a common spin-Zeeman term which decreases their
energies. However, the dominant 1s→2p excitation involves p-orbitals with different
ml values in each case resulting in different rates of change of the state energy. The
p+1 orbital rises rapidly due to diamagnetic linear and quadratic terms while p0

rises only due to the quadratic term. The p−1 orbital is affected by a paramagnetic
linear and diamagnetic quadratic term. In the interval B=[0,1 au], the linear term
appears to dominate for He resulting in a net paramagnetic behavior.
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Figure 4.4: Orbital energies changing with magnetic field strength

4.2.3 H2 Molecule

Only the singlet manifold of excited states has been computed for H2 (Fig. 2.3 and
2.4) for the sake of simplicity. All the states except one of the 1Πus are found to be
diamagnetic, and their energies rise at a faster rate than the ground state. Excitation
energies are consequently increasing with field strength. The 1Πu state shows orbital
paramagnetism up to B=0.3 au, and then the quadratic-Zeeman term takes over.
The corresponding excitation energy thus decreases first and then increases again.

The spectral intensities are seen in Figs. 3.1a-3.2b. The 1Σg →1Σu and
1Σg →1Πu

transitions show increase in spectral intensity with field strength for both Bx and
Bz, ie. parallel and perpendicular to bond-axis (x-direction). For Bz, the intensity
remains roughly constant after a point. This may also be a basis set effect, which
we shall explore in the future. The intensity change for the orbital-paramagnetic
1Πu state follows the change of the excitation energy, although the turning points
of the plots are different.

Although the H2 molecule belongs to the D∞h point group, we have labeled
the orbitals using symmetry labels from one of its Abelian subgroups, namely D2h.
This helps us to track the orbitals when the symmetry of the system with the field
is reduced. From the plots of the orbital densities in Figs. 4.11-4.16, we see that
the apart from a change in size, a field parallel to the bond axis does not alter
the orbitals qualitatively. The B3u orbital involved the 1Σg →1Πu transition, which
shows a modulation of spectral intensity which goes through a minimum around
Bx=0.4-0.6 au, shows an initial expansion with field followed by a contraction. The
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(a) 2s (b) 2s (c) 2s

Figure 4.5: He 2s orbital in Zero Field(a), Weak field(b), Strong Field(c)

(a) 2p−1 (b) 2p−1 (c) 2p−1

Figure 4.6: He 2p−1 orbital in Zero Field(a), Weak field(b), Strong Field(c)

expansion corresponds to a decrease in intensity as the overlap with the Ag orbital,
which is smaller, is reduced, and the reverse happens when the orbital contracts
again beyond a certain field. A quantitative analysis of this phenomenon in future
studies will help us pin down the correlation. When a perpendicular field is applied,
i.e., Bz, the orbitals show dramatic changes in size and shape. New nascent nodes are
also observed in some cases. At this moment, we do not have a full understanding
of their implication for the intensities. In Fig. 4.17, we present the total density
of the H2 molecule, which shows noticeable changes in the field, unlike the atomic
systems.
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(a) 2p0 (b) 2p0 (c) 2P0

Figure 4.7: He 2p0 orbital in Zero Field(a), Weak field(b), Strong Field(c)

(a) 2p+1 (b) 2p+1 (c) 2p+1

Figure 4.8: He 2p+1 orbital in Zero Field(a), Weak field(b), Strong Field(c)

(a) 3s (b) 3s (c) 3s

Figure 4.9: He 3s orbital in Zero Field(Figure4.9a), Weak field(Figure4.9b), Strong
Field(Figure 4.9c)
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Figure 4.10: Change in orbital energy levels of H2 molecule with magnetic field
along bond axis

(a) 1Ag (b) 1B1u

(c) 1B3u (d) 1B2u

Figure 4.11: Orbital density plots of H2 molecule placed in X-axis and viewing above
the XY-plane, when B=0 using basis aug-cc-pVDZ

41



(a) 1Ag (b) 1B1u

(c) 1B3u (d) 1B2u

Figure 4.12: Orbital density plots of H2 molecule placed in X-axis and viewing above
the XY-plane, when B=0.1 along X-axis using basis aug-cc-pVDZ

(a) 1Ag (b) 1B3u

(c) 1B1u (d) 1B2u

Figure 4.13: Orbital density plots for the H2 molecule placed in X-axis and viewing
above the XY-plane, when B=1 along X- axis, using basis aug-cc-pVDZ
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Figure 4.14: Changes in orbital energy levels of H2 molecule with magnetic field
perpendicular to bond axis

(a) 1A1g (b) 1B1u

(c) 1B3u (d) 1B2u

Figure 4.15: Orbital density plots for the H2 molecule placed in X-axis and viewing
above the XY-plane, when B=0.1 au along Z-axis, using basis aug-cc-pVDZ
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(a) 1A1g (b) 1B1u

(c) 1B3u (d) 1B2u

Figure 4.16: Orbital density plots for the H2 molecule placed in X-axis and viewing
above the XY-plane, when B=1 along Z- axis, using basis aug-cc-pVDZ

(a) B=0

(b) Bx=0.1 au (c) Bx=1 au

(d) Bz=0.1 au (e) Bz=1 au

Figure 4.17: Total density of H2 molecule for B=0,0.1,1 au along X-axis and Z-axis,
using aug-cc-pVDZ basis
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Chapter 5

Future Outlook

In this project, we have explored electronic spectra in strong magnetic fields in
terms of peak shifts and intensities. A simple Hartree-Fock linear response method
has been applied. We have computed transition moments in the electric dipole
approximation. The most dramatic effects are in terms of symmetry-breaking of the
molecule, which results in electric-dipole forbidden excitations becoming allowed.
We have computationally demonstrated the orbital-Zeeman and spin-Zeeman effects
for various electronic states and identified state crossings. Ground states also change
under magnetic field effects. Moreover, the quadratic Zeeman effect, wherein all
electronic states become diamagnetic after a certain system-dependent field strength,
has also been demonstrated. This is seldom pointed out but is interesting to note.
By using different flavors of the Hartree-Fock theory in terms of the spin constraints
on the orbitals, we can isolate spatial and spin effects of the magnetic field, and this
allows us to understand the changes better. We have analyzed the orbitals under a
field to try to justify the changes in the electronic spectra.

This project was designed to initiate studies in this direction and has opened the
way to a large number of possibilities. As is evident, we plan to arrive at a detailed
understanding of the mechanism in which orbital changes by magnetic fields affect
electronic spectra. Our current studies have indicated that an extensive study of
basis set effects on all the significant observations made is required as our ability
to computationally capture the response of various quantities to the external field
critically depends on the functional space available to the variational procedure.
Since magnetic fields offer a unique opportunity to continuously change the orbitals,
we would hopefully find a correlation between orbital shapes and peak positions and
intensities. Simultaneously, continuous breaking of symmetry is also possible, and
exploration of these effects is also eminently possible. Another direction of future
research would be to extend the investigations to non-uniform fields wherein spin-
density changes of the orbitals will have to be addressed. In summary, this project
tries to further our fundamental understanding of the electronic structure, and the
exploration can be continued in various ways.
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Appendix

1

2 scf{

3 spin -symmetry -constraint = Restricted Hartree -Fock

4 linear -dependence -tol = 1e-10

5 uhf -spin -projection = 0

6 disable -spin -zeeman -in -fock -matrix = no

7 noisy -init -guess = no

8 # density -matrix -input -file = h2o.UHF .0.005. dmat

9 # density -matrix -output -file = plotxy15.csv

10 density -plot -data = {plotxyBz1.csv ,(-10,-10,0) ,(20,0,0)

,(0,20,0) ,(0,0,2) ,(100 x101x1),precision =4,scolon=y,fields{rho ,j

}}

11 molecular -orbitals -to -plot = (1,2,3,4,5,6,7,8) min -scf -

iterations = 0

12 max -scf -iterations = 160

13 use -density -fitting = no

14 use -admm = no

15 analyze -using -dft -grid = no

16

17 diis{

18 convergence -tolerance = 1e-10

19 subspace -dimension = 7

20 diagonalization -temperature = 0

21 }

22 }

23

24

25 system{

26 molecular -charge = 0

27 correlation -model = Hartree -Fock

28

29 hamiltonian{

30 electron -mass = 1

31 speed -of -light = 137.036

32 adiabatic -connection -lambda = 1

33 nuclear -charge -distribution = point charge

34

35 magnetic -field = (0.000 ,0.000 ,1)

36 gauge -origin = (0, 0, 0.1173)

37

38 linear -magnetic -field = {(0.0 , 0, 0), (0, 0, 0), (0, 0, 0)}

39 linear -magnetic -origin = (0, 0, 0)

40

41 electric -field = (0, 0, 0)

42 electric -origin = (0, 0, 0)

43 linear -electric -field = {(0, 0, 0), (0, 0, 0), (0, 0, 0)}

44 integral{
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45 use -coulomb -integral -permutation -symmetry = yes

46 use -cauchy -schwarz -screening = yes

47 cauchy -schwarz -tol = 1e-15

48 boys -function -tol = 1e-17

49 }

50 }

51

52 # data on state flags lost , output incomplete here

53 use -london -orbitals = yes

54 gto -contraction -type = normalized primitive

55 basis = aug -cc-pVDZ

56 # geometry

57 charge = 1.0

58 H 0.1643 0.0000 0.0000

59 H -0.1643 0.0000 0.0000

60 }

61 }

Listing 5.1: London input file of H2 molecule for orbital analysis

This is an london input file generates 8 orbitals of H2 under B=1 au applied in
Z-direction with aug-cc-pVDZ basis. Where these two H-atoms are positioned at
(-0.1643,0,0) and (0.1643,0,0).

1 DATA = load(’plotxyB0.csv’);

2

3 MOLECULE = [

4 0.0000 0.0000 0.0000

5 ];

6

7 n1 = 101;

8 n2 = 100;

9 Xi = DATA (:,1);

10 Yi = DATA (:,2);

11 Zi = DATA (:,3);

12 Xm = reshape(Xi ,n1 ,n2);

13 Ym = reshape(Yi ,n1 ,n2);

14 Zm = reshape(Zi ,n1 ,n2);

15 Rhoi = DATA (:,4);

16 Rhom = reshape(Rhoi ,n1 ,n2);

17

18 figure(’Name’,’RHFDensity ’,’NumberTitle ’,’off’); clf; hold on;

19

20 %contourf(Ym ,Zm ,log10 (1e-20+ Rhom) ,50);

21 pcolor(Xm ,Ym ,log10(1e-20+ Rhom));

22 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

23 shading interp

24

25 DATA = load(’plotxyB0.csv_orb ’);

26

27 n1 = 101;

28 n2 = 100;

29 Xi = DATA (:,1);

30 Yi = DATA (:,2);

31 Zi = DATA (:,3);

32 Xm = reshape(Xi ,n1 ,n2);

33 Ym = reshape(Yi ,n1 ,n2);

34 Zm = reshape(Zi ,n1 ,n2);

35
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36 HOMOi = DATA (:,4) + 1i*DATA (:,5);

37 HOMOm = reshape(HOMOi ,n1,n2);

38

39 figure(’Name’,’RHFOrb_1 ’,’NumberTitle ’,’off’); clf; hold on;

40

41 %contourf(Ym,Zm,abs(HOMOm) ,50);

42 pcolor(Xm ,Ym ,abs(HOMOm));

43 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

44 shading interp

45

46

47 HOMOi = DATA (:,6) + 1i*DATA (:,7);

48 HOMOm = reshape(HOMOi ,n1,n2);

49

50 figure(’Name’,’RHFOrb_2 ’,’NumberTitle ’,’off’); clf; hold on;

51

52 %contourf(Ym,Zm,abs(LUMOm) ,50);

53 pcolor(Xm ,Ym ,abs(HOMOm));

54 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

55 shading interp

56

57 LUMOi = DATA (:,8) + 1i*DATA (:,9);

58 LUMOm = reshape(LUMOi ,n1,n2);

59

60 figure(’Name’,’RHFOrb_3 ’,’NumberTitle ’,’off’); clf; hold on;

61

62 %contourf(Ym,Zm,abs(LUMOm) ,50);

63 pcolor(Xm ,Ym ,abs(LUMOm));

64 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

65 shading interp

66

67

68 HOMOi = DATA (: ,10) + 1i*DATA (: ,11);

69 HOMOm = reshape(HOMOi ,n1,n2);

70

71 figure(’Name’,’RHFOrb_4 ’,’NumberTitle ’,’off’); clf; hold on;

72

73 %contourf(Ym,Zm,abs(LUMOm) ,50);

74 pcolor(Xm ,Ym ,abs(HOMOm));

75 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

76 shading interp

77

78

79 HOMOi = DATA (: ,12) + 1i*DATA (: ,13);

80 HOMOm = reshape(HOMOi ,n1,n2);

81

82 figure(’Name’,’RHFOrb_5 ’,’NumberTitle ’,’off’); clf; hold on;

83

84 %contourf(Ym,Zm,abs(LUMOm) ,50);

85 pcolor(Xm ,Ym ,abs(HOMOm));

86 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

87 shading interp

88

89

90 HOMOi = DATA (: ,14) + 1i*DATA (: ,15);

91 HOMOm = reshape(HOMOi ,n1,n2);

92

93 figure(’Name’,’RHFOrb_6 ’,’NumberTitle ’,’off’); clf; hold on;
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94

95 %contourf(Ym ,Zm ,abs(LUMOm) ,50);

96 pcolor(Xm ,Ym ,abs(HOMOm));

97 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

98 shading interp

99

100

101

102 HOMOi = DATA (: ,16) + 1i*DATA (: ,17);

103 HOMOm = reshape(HOMOi ,n1,n2);

104

105 figure(’Name’,’RHFOrb_7 ’,’NumberTitle ’,’off’); clf; hold on;

106

107 %contourf(Ym ,Zm ,abs(LUMOm) ,50);

108 pcolor(Xm ,Ym ,abs(HOMOm));

109 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

110 shading interp

111

112 HOMOi = DATA (: ,18) + 1i*DATA (: ,19);

113 HOMOm = reshape(HOMOi ,n1,n2);

114

115 figure(’Name’,’RHFOrb_8 ’,’NumberTitle ’,’off’); clf; hold on;

116

117 %contourf(Ym ,Zm ,abs(LUMOm) ,50);

118 pcolor(Xm ,Ym ,abs(HOMOm));

119 plot(MOLECULE (:,1),MOLECULE (:,2),’kx’,’MarkerSize ’ ,20);

120 shading interp

Listing 5.2: Matlab code for plotting complex orbitals

1 # This script is for Making multiple output file and running the

london program for every file

2 #Uncomment the tuple accordingly for B only in X direction , B only

in Y direction & only in Z direction

3 import os

4 import numpy as np

5 #For B only in X direction

6 t= tuple((np.around(i,2) ,0,0) for i in np.around(np.linspace

(0 ,0.1 ,10) ,2))

7

8

9 #Loading the given input file of H20

10 f=open(’h2o.UHF .0.000. inp’)

11 script=open(’h2o.sh’)

12 with script as line:

13 scr=line.readlines ()

14 with f as line:

15 #reading through the file

16 s=line.readlines ()

17 #s will be as a list

18 for i in range(len(t)):

19 #I find out that line 102 ,that is here s[102] contains the

magnetic field value and Now change that value to our input

vlaues

20 s[102]=f’ magnetic -field = {str(t[i])}\n’

21

22 k=open("file_x"+str(i)+".inp","w")

23 #writting that input to a seperate file for every Magnetic

field value
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24 #New input file created

25 for j in s:

26 k.write(j)

27 k.close ()

28 #for script file update

29 scr [23]=f’/home/sangita.sen/packages/london/london.x file_x ’+

str(i)+’.inp >file_x ’+str(i)+’.out\n’

30 script1=open("h2o_x_"+str(i)+".sh","w")

31 for l in scr:

32 script1.write(l)

33 script1.close()

34

35 #Running the london with every file and save the output to a

file

36 #Give the london.x path according to your path variable (For me

it is /home/rahul/Documents/london /./ london.x)

37 os.system("qsub h2o_x_"+str(i)+".sh")

38 f.close ()

Listing 5.3: Python code for running london

1 #To extract the energies from the output file

2 import numpy as np

3 #running for every output file at once

4 for xx in range (10):

5 #opening the output file

6 #edit the file name string accordingly

7 l="file_x"+str(xx)+".out"

8 g=open(l,’r’)

9

10 #reading through the output file

11 with g as line:

12 p=line.readlines ()

13 #print(p)

14 j=0

15 for i in p:

16 j=j+1

17 #searching a specific string i from the file line p

18 if i==’The Final eigenvalues from the Davidson method\n’:

19

20 #print(i)

21 #print(p[j+1])

22 #From the file p[j+1] will give us the string contaning

the energy values

23 v=p[j+1]

24 #print(type(v))

25 #print(v)

26

27 #splitting the v string with space

28 jj=v.split()

29 #print(jj)

30 c=[]

31 #extracting the energies only to o

32 o=jj[3::]

33 #print(o)

34 #float the numbers in the list and appending to c

35 for i in o:

36 c.append(float(i))

37 #print(c)
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38

39 a=np.array(c)

40 #filename=input (" filename is := ")

41 #can change the file name according to the magnetic field

directions

42 n=open("arrayX.txt","a+")

43 #writting to file only with energy values

44 np.savetxt(n,a,newline="\n")

45

46 n.close ()

Listing 5.4: Python code for extraction of energy

1 L=[]

2 for i in range (11):

3 with open(’file_y ’+str(i)+’.out’) as line:

4 l=line.readlines ()

5 L.append(float(l[591][33:51]))

6 import numpy as np

7 np.savetxt(’xvalue.txt’,np.array(L))

Listing 5.5: Python code for extraction of Hartree-energy

1 #!/bin/bash

2 # Parallel job submission script:

3 # Usage: qsub <this_script >

4 # The shell used to run the job

5 #$ -S /bin/bash

6 #

7 # The name of the parallel queue to submit the job to

8 #

9 # Define the parallel runtime environment and number of nodes

10 # NB: number of nodes is one more than needed as on e copy resides

on the master node

11 #$ -pe mpi 1

12 # Use location that job was submitted as working directory

13 #$ -cwd

14 #

15 # Export all environment variables to the slave jobs

16 #$ -V

17 #

18 # Put stdout & stderr into the same file

19 #$ -j y

20 #

21 # The name of the SGE logfile for this job

22 #$ -o output.log

23 #mpiexec -n $ NSLOTS ./heat

24 /home/sangita.sen/packages/london/london.x file_x+str(i)+.inp >

file_x+str(i)+.out

Listing 5.6: bash file for cluster
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