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PREFACE

The non-relativistic Schrödinger Hamiltonian is spin-free and ought to generate

wave-functions which are eigenfunctions of S2. Since, molecular properties are defined

in a perturbative framework, it is pertinent that the wave-function corresponding to

the zeroth order spin-free Hamiltonian be properly spin-adapted even if the perturba-

tion breaks the spin-eigenfunction nature of the wave-function eventually. Thus, the

development of electronic correlation theories which in addition to maintaining the

basic requirements of accuracy and size-extensivity generates a properly spin-adapted

approximate wave-function is a worthy pursuit. Coupled cluster theory of both the

single-reference and the multi-reference type have emerged as effective tools for es-

timating the electronic correlation energy in molecules wherein the multi-reference

theories have the advantage of being able to handle molecular states which do not

have a dominant single determinantal representation.

In this thesis we have formulated and implemented a suite of related multi-reference

coupled cluster theories to describe open-shell molecular systems taking care to main-

tain spin-adaptation of the wave-function and incorporate the effects of electron cor-

relation and orbital relaxation to the greatest extent possible within the limits of

computational and theoretical viability. A spin-free unitary group adapted Jeziorski-

Monkhorst type of Ansatz has been developed and applied in the State-Universal

Multi-Reference Coupled-Cluster (SUMRCC) framework to determine energies of ex-

cited states and electron attached/detached states. We call our method as the Unitary

Group Adapted State Universal Multi-reference Coupled Cluster (UGA-SUMRCC)

theory, the study and ramifications of which form the basic substance of this thesis.

A thorough investigation of the role of different terms in the equations, the choice of

the excitation manifold and the trends to be expected from various approximations

of the theory is undertaken.

In the UGA-SUMRCC theory, we have used a normal-ordered multi-exponential

type wave operator Ansatz with spin-free excitations in the cluster operators. It gen-

erates a spin-adapted CC function and has a terminating expression of the so-called

‘direct term’ at the quartic power of cluster amplitudes. The exponentiation of relax-

ation inducing operators is expected to be able to describe orbital- and correlation-

relaxation effectively. We investigate this aspect by applying our formalism to study

ionized/excited state energies involving core electrons which subjects the molecule to

a large orbital- and correlation-relaxation. The high degree of orbital relaxation at-

tendant on removal of a core electron and the consequent correlation relaxation of the



ionized state are found by us to be captured very effectively with the Hartree-Fock

orbitals for the neutral ground state using our UGA-SUMRCC. The UGA-QFMRCC

uses a related factorized Ansatz which allows us to drop the correlated ground state

energy from the expressions thereby yielding energy differences directly.

For studying low-lying excitation energies, we have used h-p excited CSFs rela-

tive to the closed-shell HF state. The model space thus generated is a special type of

incomplete model space (IMS), and we have formulated an explicitly size-extensive for-

mulation for the excited states, following earlier theories of Mukherjee, which advocate

the abandoning of the customary intermediate normalization of the wave operator.

We have delineated the non-trivial modifications of our formalisms in this context.

Since the core electrons are more severely affected by relativity, we have undertaken

to study the importance of scalar relativistic effects on core ionization and excitation

energies in the context of a spin-free Dirac-Coulomb Hamiltonian. The effects are

found to be significant even for small molecules such as water and the effect increases

as we move to molecules containing medium-heavy atoms as expected.

We also present in this thesis, a formulation of the analytic gradients for the single

open-shell limit of the UGA-SUMRCC which we call UGA-OSCC. As a preliminary

demonstration of the accuracy in properties to be expected from this formulation we

present electric dipole moments and polarizabilities of some small molecules computed

using numerical gradients.

We find that the two theories developed by us in this thesis, viz. UGA-SUMRCC

and UGA-QFMRCC can yield spectroscopic energy differences with chemical accu-

racy. It is remarkable that the theories can provide very accurate core electron ioniza-

tion potentials even when the orbitals of the neutral molecule are used. The theories

are quite stable giving the same degree of accuracy for the variety of molecular states

studied by us in this thesis and we are optimistic of further developments on them.

IACS Sangita Sen

August, 2015
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Chapter 1

Overview and Scope of the Thesis
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1.1 The Premise

Quantum Chemistry of atoms and molecules, is today primarily a search for balance.

While this is a field which bridges our understanding of physical interactions and our

observation of physical and chemical phenomena, the interplay of a myriad diverse

interactions at varied length and energy scales makes it imperative for us to not only

understand them individually but also to adjudge their relative role in shaping the phe-

nomenon under study. Quantum Chemistry, in general, and Electronic Structure and

Dynamics in particular have maintained a steady growth rate over the last five decades

pushing the frontiers of theoretical and computational research into the experimental

laboratories. Theories of Electronic Structure and Dynamics are now routinely used

in understanding experimental findings and have in several instances encouraged new

experiments. The challenge facing theoreticians today is to encompass diversity in

the time and length scale of interactions, the energy ranges for di↵erent phenomena

and the idiosyncrasies of molecular states, all within the limitations of computational

technology and resources. While a single theoretical framework to do it all seems

unlikely in the current scenario, much has been achieved in various directions. The

formulation of sophisticated methodologies has kept pace with the rapid evolution

of computers and algorithms and we can now not only venture to compute spectro-

scopic parameters, reaction pathways and other quantities related to the energetics of

molecules but also the response of atoms and molecules to external perturbations.

The Schrödinger equation is the center piece of electronic structure theories and

the impossibility of solving it analytically for even a two-body Hamiltonian makes it

intriguing to find out the best possible approximate solution. Although potentially

exact theories exist, their viability for molecules of even moderate size is unlikely and

the search for approximate theories continues unabated. Accuracy and computational

cost are the two main watchwords for the viability of any current or future theory. Ac-

curacy implies the correct modeling of the physical interactions governing a molecule

and may be translated into a number of desirable characteristics of a theory such

as systematically improvable accuracy, physically interpretable terms, proper balance

between di↵erent types of interactions, correct scaling of the energy with system size

and satisfying known limits of the energy and the wave function. We shall discuss

these issues in more concrete terms once the necessary terminologies have been in-

troduced. While the computational cost will increase with system size, the di↵erent

theories have a di↵erent rate of increase called the formal “scaling” of the theory and

the focus is on achieving as low a scaling as possible. Both theoretical considerations

and algorithmic developments play an important role in this regard.

An electronic state is fully represented by a wave-function which satisfies the

Schrödinger equation of its Hamiltonian. It thus has three inter-dependent ingredi-
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Figure 1.1: Ingredients for electronic structure theories

ents: a Hamiltonian representing the interactions among the particles in the molecular

system, a basis set which provides a finite function space for describing the wave func-

tion (which is, in principle, infinite) and a formal parametrization of the many-body

wave function with variables in some functional form conforming to physical require-

ments of the wave function and enabling easy determination of the variables via the

Schrödinger equation. All three ingredients are available in hierarchies of accuracy

and are required in di↵erent proportions for di↵erent situations. Fig. 1.1 is a pictorial

depiction of the possible choices.

The Hamiltonian for a molecule involves interactions among nuclei and electrons.

The mass and velocity scales of the nuclei are, in general, very di↵erent from that of the

electrons. Thus, the nuclear degrees of freedom can be decoupled from the electronic

degrees of freedom by what is called the Born-Oppenheimer (BO) approximation

and the total molecular wave function may be written as a product of the nuclear

wave function and the electronic wave function each containing the information of

the other in a parametric form. The BO approximation is implicit in all electronic

structure theories and the corresponding electronic Hamiltonian is called the Adiabatic

Hamiltonian [1]. A plot of the energy of an electronic state against nuclear geometry

constitutes the potential energy surface (PES) for the motion of the nuclei. However,

situations often arise where the BO approximations are invalid such as at conical

intersections of adiabatic states and in order to account for Jahn-Teller e↵ects in

molecules and one must shift to a self-consistent solution for the nuclear and electron

wave-function by using what is called a Diabatic Hamiltonian [2]. In all the following

discussions we restrict ourselves to only those situations where the BO approximation

is valid.

Within the BO approximation, the electronic Hamiltonian has a clear hierarchy
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ranging from the non-relativistic (NR) Schrödinger Hamiltonian through the relativis-

tic (Rel) Dirac Hamiltonian and finally to the full Hamiltonian inclusive of quantum

electrodynamic (QED) e↵ects [3, 4, 5, 6]. Spin being a manifestation of the rela-

tivistic behavior of electrons, the NR Schrödinger Hamiltonian is spin-free and hence,

no spin-dependent interactions feature in it. Consequently, the corresponding wave

function is an ordinary function of complex variables and an eiqenfunction of the S2,

spin operator. Pauli constructed a Hamiltonian using matrices to mimic the e↵ect

of spin-dependent interactions (the Pauli spin matrices) leading to what is called the

Pauli Hamiltonian or the Pauli-Schrödinger Hamiltonian [7]. The wave functions

obtained as a solution of the Pauli equation for a single electron have 2-components

and are called spinors. Dirac in 1928 formulated the fully relativistic Hamiltonian for

a free electron [8] leading to the emergence of spin as a consequence of the union of

quantum mechanics and special relativity and the eventual discovery of the positron.

On solution of the Dirac equation one obtains wave functions which are vectors of four

complex numbers (known as bispinors), two of which resemble the Pauli wavefunction

in the non-relativistic limit, in contrast to the Schrödinger equation which describes

wave functions of only one complex value. Dirac’s theory provided an interconnect

between Pauli’s phenomenological theory of spin justifying its multi-component wave-

functions and the Weyl equation [9] which can be obtained as the zero mass limit of the

Dirac equation. In this thesis, we will largely concentrate on the use of the Schrödinger

Hamiltonian but some studies using spin-free relativistic Hamiltonians (ie. consider-

ing scalar relativistic e↵ects) have been carried out for specialized applications where

such e↵ects were deemed important.

The basis sets, of course, are a vital component of an electronic structure theory

and must be chosen not only in concurrence with the choice of the Hamiltonian and

the parametrization of the wave function but also keeping in mind the information one

wishes to extract from the electronic wave function. For example, a general thumb

rule is that one requires more di↵use functions to describe anions and Rydberg-like

excited states than one needs for the ground state (GS). Also, an accurate computation

of electrical properties requires a basis set containing functions of higher angular

momentum and for magnetic properties the question of guage-independence must be

suitably handled. There are a large number of specialized basis sets available and

although we shall be careful in our choices we will not discuss this aspect in detail

unless necessary. An extensive discussion may be found in the book by Helgaker et

al. [10]

The new developments presented in this thesis relate to the last ingredient - the

choice of parametrization for the wave-function which is closely related to the choice

of the Hamiltonian. The following quote puts the di�culty of representation of a

many-electron wave function into perspective.
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“. . .The solution is a function of 3N variables, even if it were possible to evaluate

such a solution to any degree of numerical accuracy required, no satisfactory way of

presenting the results is known. . . . the full specification of a single wave function of

neutral Fe is a function of seventy eight variables. It would be rather crude to restrict

to ten the number of values of each variable at which to tabulate this function, but

even so, full tabulation of it would require 1078 entries, and even if this number could

be reduced somewhat from considerations of symmetry, there would still not be enough

atoms in the whole solar system to provide the material for printing such a table.”

- Hartree (1948)

The path that has been adopted with great success is to first take recourse to the

simplest possible model - the Independent Particle Model (IPM) in this case - and

then carry out systematic corrections to it. A hierarchy of theories, which constitute

what is called the ab initio group of methods, is built on the premise that a mean-field

description of an electron in the field of the nuclei and the other electrons in a molecule

is the most convenient starting point for theoretical realization of the electronic state

and the short-range electron-electron interactions may be modeled at varying degrees

of accuracy on top of this. In Sec. 1.2 a cursory overview of the electronic structure

theories is given and commonly used terminologies related to them are discussed.

1.2 Mean Field and Beyond

In this thesis, we deal with modeling electronic interactions beyond the mean-field by

taking the mean-field function as a starting function. Hence, a clear understanding

of the underlying mean-field model is crucial to our developments. The mean field

wave-functions of the individual electrons (the orbitals!) are assembled as a Slater

determinant to represent the many-particle state. The determinantal structure au-

tomatically takes care of the anti-symmetry and Pauli Exclusion Principle governing

the wave function. However, there are a vast number of situations where a single

determinant is inadequate for a proper description, be it to faithfully represent the

spin-state of the function (an open shell singlet, for instance) or simply due to the

near-degeneracy or quasi-degeneracy of a number of determinants such that the dom-

inant determinant cannot be identified. A spin-adapted combination of determinants

is called a Configuration State Function (CSF). A many-electron wave function which

is a single determinant or a single CSF is said to be single reference (SR) while those

which are a linear combination of several determinants or CSFs are said to be multi-

reference (MR). A preliminary representation of an MR state is usually selected by

first selecting a set of quasi-degenerate Slater determinants or CSFs. This set is called

an “active space”. A selection of quasi-degenerate functions is usually done by select-

ing certain “active” orbitals and “active” electrons and then distributing these active
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electrons in the active orbitals to generate the quasi-degenerate functions. When

the active electrons are distributed in the active orbitals in all possible manner, a

“complete active space” (CAS) is said to be generated. It may so happen, that some

functions in this CAS are not quasi-degenerate with the others. If this is known, a

judicious choice of active space may be made as a sub-set of the CAS. Such an active

space is called an “incomplete model space” (IMS) in general. Several ways of system-

atically constructing specific IMSs have been proposed such as the Quasi-Complete

and Isolated Incomplete Model Space (IIMS) of Kutzelnigg [11] and the Restricted

Active Space (RAS) of Olsen et al. [12]. The zeroth order function is then, a linear

combination of the active/model space functions. Denoting each model function of

the Nd dimensional model space as �µ, the starting function for an MR theory may

be written as:

 0k =
N

dX

µ=1

�µcµk; k = 1, Nd (1.1)

Long-range, system-specific correlation due to near-degeneracy are called non-

dynamical/static correlation while short-range correlation due to instantaneous electron-

electron repulsions is called dynamical correlation [13]. The correlation energy usually

refers only to the dynamical correlation and is defined as:

Ecorrelation = Eexact � Emean�field (1.2)

However, the two types of correlation are not mutually exclusive and a full inclusion

of dynamical correlation within the limits of the basis set is essentially equivalent to

the full inclusion of non-dynamical correlation and vice-versa.

For the purposes of this thesis, we would like to draw a distinction between the

nature of the formal reference function (whether SR or MR) and the mean-field pro-

cedure by which the orbitals are obtained to construct the reference function. For

example, orbitals obtained from an MR mean-field computation may be assembled

as an SR function for further introduction of correlation. This would mean that the

reference function is not the variationally optimized function for that state (it may not

even be a physically meaningful state) but it may be a perfectly good reference func-

tion for the state we are interested in. However, one must be careful in reconstructing

the Hamiltonian for the reference function and not assuming anything which follows

from the variational optimization of the function. Alternatively, one may use orbitals

from an SR mean-field optimization and construct the basis for the MR function.

How the combining coe�cients are obtained in this case depends on the nature of the

correlation theory and we will come back to it later.

Starting from a mean-field SR theory (say, the Hartree-Fock theory [14, 15] (NR)

or Dirac-Fock theory[16, 17] (Rel)) or MR theory (the Multi-Configuration Self-
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Consistent Field theory (NR [18] or Rel [3, 19])), the electron correlation may be

introduced in several ways viz. perturbative theories (PT), configuration interaction

(CI), coupled cluster (CC), perturbative hierarchies for dynamical correlation like Al-

gebraic Diagrammatic Construction (ADC) and other less organized hierarchies such

as Coupled Electron Pair Approximation (CEPA), etc although the basic idea is to

expand the functional space representing the wave function by mixing excited deter-

minants/CSFs generated as a by-product of the mean-field procedure to introduce

the e↵ect of electron correlation. The former group of theories have both SR and

MR versions. An extensive discussion on the varied aspects of electronic structure

theory and the various methods for modeling electronic correlation may be found in

the books by Helgaker et al.[10] and Yarkony (ed) [20]. Numerous reviews are also

available [21, 22].

We may propose the problem in a second-quantized notation as follows:

Let,  0 be a starting mean-field function (SR or MR) and let us assume that there

exists a wave operator, ⌦, which acts on it to give the exact wave function,  .

| i = ⌦ | 0i (1.3)

Then the task set is to design an operator functional form for ⌦ (called Ansätz) and

solve the SE to obtain its components. For PT, ⌦ is expanded as a perturbative series

assuming electron correlation to be a perturbation to the mean-field model, CI adopts

a linear Ansätz and CC uses an exponential Ansätz [23, 24, 25, 26, 27] (see Eq. (1.4)).

⌦ =
1X

i=0

�i⌦(i)

⌦ =
nX

l=0

clEl

⌦ = eT (1.4)

where

T =
X

l

tlEl

El | 0i = |�li (1.5)

In a given finite basis set, all full PT, CI and CC theories are exact and equivalent but

the challenge lies in achieving the highest possible accuracy of the electronic energy

at the lowest possible approximation. When the problem of incorporating correlation

is tackled perturbatively giving the series of perturbative theories: MP2, MP3, etc. it

is di�cult to systematically approach the exact solution as this series converges very
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Figure 1.2: Various hierarchies of theories for approaching the exact solution
to the quantum many-electron problem

slowly and not monotonically. CI has better success in terms of generating a converg-

ing series of theories but all approximate CIs fail in fulfilling the basic requirement of

additive separability of energy in the non-interacting limit, ie. size-consistency (more

in Sec. 1.3). In Fig. 1.2, the lengths of the arrows depict how far we have to go in

the hierarchy to converge to the exact solution using the di↵erent types of methods.

Coupled Cluster (CC) clearly scores on this ground. We shall see in Sec. 1.3 why the

CC Ansätz is the natural choice for achieving size-consistency.

The relative benefits of a SR hierarchy vis a vis the MR hierarchy depends, of

course, on the electronic state being studied. An MR state will approach the exact

limit faster in an MR-based hierarchy while an SR state is better handled in an

SR hierarchy. However, as is evident from Fig. 1.2, dynamical and non-dynamical

correlation cannot be decoupled and usually influence each other.

The CC theory in the SR domain [28, 29, 30, 31, 32, 33] has proved its mettle over

the last 50 years and is widely accepted as the best among the SR correlation theo-

ries. A similar universal-standard for MRCC theories is still elusive, the underlying

reason being that MR electronic states themselves are of a wide variety and impose

a number of stringent physical requirements on the theory which cannot all be met

simultaneously as of now. The nature of these requirements and their implications on

the formal structure of the theory are illustrated as and when they naturally arise.

Several MRCC theories have been developed over the years and have shown promise

within specific realms of applicability. The interested reader may look at the reviews

by Lyakh et al. [34] and Köhn et al. [35]. This thesis continues the endeavors and aims

at the formulation and implementation of a group of multi-reference coupled-cluster
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(MRCC) theories which are designed to compute ionized and excited state energies

per se (UGA-SUMRCC) or the energy di↵erences directly (UGA-QFMRCC). We wish

our theories to be spin-free and handle both complete and incomplete model spaces in

a size-extensive manner. The strength of these theories lies in encompassing accurate

prediction of not only the excitations and ionizations of valence electrons but also

that of core electrons using the ground state orbitals in both cases which implies that

the theories must have the capability of handling a high degree of orbital relaxation

in the sense of Thouless’ theorem [36]. Various intertwined issues need to be taken

care of to accomplish this and we analyze them and suggest ways to circumvent the

conceptual and technical bottlenecks as the thesis progresses.

1.3 Connectivity, Size-extensivity and the Exponential Ansätz

Size extensivity and size consistency are sometimes used interchangeably but they are,

in a rigorous sense, quite di↵erent and must be carefully distinguished especially when

we wish to use this as a basis for formulating a wave-function based electronic structure

theory. Size extensivity [37, 38, 30] is the property of a theory to scale “properly”

with the number of electrons. The word “properly” must be carefully considered.

For any theory incorporating electron correlation, a linear scaling of the energy with

the number of electrons is impossible. In general, the energy of a composite system,

A+B, can be written as:

EA+B = EA + EB + EAB (1.6)

Then, what is “proper” scaling ? The word “proper” may be interpreted as the

absence of spurious interaction terms between the two sub-systems A and B such that

if all the interaction terms between A and B (through the Hamiltonian) are switched

o↵, EAB becomes zero and EA+B = EA + EB. For example, if a theory yields an

energy expression of the form:

EAB = gA(p, q, ...)gB(x, y, ...) (1.7)

where {p, q, ...} \ {x, y, ...} = {}, then even when all interaction between A and B is

switched o↵ EAB will not go to zero. The parameters p, q, ..., x, y, ... may be thought

of as orbital labels in the context of electronic structure theories. Such a theory would

be called size inextensive. However, if some theory has a form of energy as:

EAB = gA(p, q, .., i, ..)gB(x, y, .., i, ..) (1.8)
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where 0i0 is a common label in the sub-systems A and B, switching o↵ the interactions

would mean putting EAB to zero. Such a theory would be called “size extensive” and

the corresponding energy expression would be called “connected”. It is this property

of common labels or “connectivity” of energy expressions and all its components that

will be utilized to analyze the size extensivity of any theories we put forward in the

course of this discussion. Size consistency [29] on the other hand is the additive

separability of the energy of two molecular fragments in the true dissociation limit.

Thus, in a size consistent theory the energy of a homo-diatomic A2 computed at large

inter-atomic separation will be twice the energy of the atom A. The orbitals for the

computation on A2 are, in general, di↵erent from those for the computation on A but

are related by some rotation. Thus, for a theory to be size consistent not only should

the energy from it be size extensive in the sense that no spurious interaction terms

are present but also invariant under rotation of orbitals.

Now, let us demand that any theory we formulate must have this property of

separability of energy, ie. size extensivity. Let, the wave operator, ⌦, transform the

approximate wave function �0 to the exact function  0.

 0 = ⌦�0 (1.9)

Consider any partitioning of the system into sub-systems A and B. Then,

�0 = A[�0A�0B] (1.10)

 0 = A[ 0A 0B] (1.11)

and we demand,

E0 = EA + EB (1.12)

when A and B are non-interacting. For an occupation number representation of the

wave function, for example as:

⌦ =
X

ia

⌦a
i a

†
aai +

1

2

X

ijab

⌦ab
ij a

†
aa

†
bajai (1.13)

the anti-symmetrizer, A, is redundant as the creation-annihilation operators them-

selves subsume the property of anti-commutativity. Hence, we can write,

 0A = ⌦A�0A (1.14)

 0B = ⌦B�0B (1.15)
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and hence,

 =  A B (1.16)

⌦�0A�0B = ⌦A⌦B�0A�0B (1.17)

Thus, the simple requirement for a size-extensive theory is that

⌦ = ⌦A⌦B (1.18)

An Ansätz which satisfies this requirement at any truncated level is:

⌦ = eT (1.19)

⌦A⌦B = eTAeTB (1.20)

= eTA

+T
B (1.21)

In view of this insight, we change our idea of representing the wave operator as a

linear combination of strings of creation-annihilation operators as in Eq. (1.13) to

the exponential of an operator, T, which itself is a linear combination of strings of

creation-annihilation operators. Thus, the CC Ansätz is naturally suggested by the

requirement of size-consistency. For an MR situation, the CC Ansätz must be suitably

modified keeping in mind the requirement of preserving the property of multiplicative

separability of the wave operator in the non-interacting limit.

To begin to understand the world of multi-reference coupled-cluster (MRCC)

theories one must start with understanding why the single-reference coupled-cluster

(SRCC) is such a great success when it works and when it is that it doesn’t. Thereon,

we must pause to contemplate the following questions.

1) What desirable features of SRCC do we wish to preserve ?

2) What features of SRCC are in contradiction with its extension to MR situations

(even if desirable) such that we cannot feasibly retain them ?

3) What additional properties must MRCC have in order to make it e↵ective ?

1.4 SRCC: A Quick Visit

SRCC aims at incorporating electron correlation on top of a single-determinant SCF

wave function, |0i.It is a wave operator based approach which models the electron-

electron interaction by means of an exponential Ansätz, eT where T mixes virtual

functions.

| CCi = eT |0i (1.22)
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The most common approximation is the Coupled-Cluster Singles Doubles (CCSD)

theory [39, 40]:

| CCSDi = eT1+T2 |0i (1.23)

⌘ (1 + T1 + T2 +
1

2!
T 2
1 +

1

2!
T 2
2 + T1T2 +

1

3!
T 3
1 +

1

3!
T 3
2 +

1

2!
T2T

2
1 + ...)|0i (1.24)

where T1 and T2 are the single and double excitation operators defined as:

T1 =
X

i,a

tai e
a
i (1.25)

and

T2 =
X

i,a,j,b

1

2
tabij e

ab
ij (1.26)

where i, j are the hole orbitals and a, b are the virtual orbitals. eai and eabij are the

elementary excitation operators whose structures in the second quantization notation

are the following:

eai = a†aai (1.27)

and

eabij = a†aa
†
bajai (1.28)

tai and tabij are the associated cluster amplitudes. A string of creation-annihilation

operators is characterized by their order of action on a function. To make the order of

action of the operators unique, a so-called “normal ordering” is defined. “Normal or-

dering” implies that all the annihilation operators in the string act before the creation

operators. Normal ordering is always with respect to some function which is called

the “vacuum”. If the vacuum is the true vacuum (ie. an absence of particles), the

strings which could generate a non-zero function would be strings of creation opera-

tors having a length equal to the number of particles in the system. This is unwieldy

and hence, the vacuum chosen for correlation theories is generally the Hartree-Fock

function which is called the “physical vacuum”. Then, the T-operators acting on

the Hartree-Fock function, �0, generate “excited functions” or “virtual functions” by

annihilating particles from orbitals occupied in �0, ie. i,j,.. thereby creating “holes”,

and creating particles in the virtual orbitals, ie. a,b,.... All such excited determinants,

along with |0i, are said to span a Hilbert-space which forms the many-particle basis

for a system with a fixed number of particles.

SRCC treats the leading contribution of pair-wise interaction to all orders through

the exponentiation of the two-body operator T2 while the orbital relaxation in presence

of correlation is also modeled to all orders by the T1 operator. The interpretation of
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the action of T1 as modeling the e↵ect of orbital-relaxation on energy follows from the

Thouless theorem [36]. This feature of the SRCC Ansätz, eT , to give importance to

the most important physical interactions is responsible for the high accuracy of the

SRCC energies. Triples, being computationally expensive, are sometimes included

approximately on perturbative considerations giving rise to various theories such as

CCSD-T [41], CCSD+T [42] and CCSD(T) [43, 44, 45, 46] among others. CCSD(T)

is currently considered to be the gold standard of electronic correlation theories. The

second implication of the exponential Ansätz is that it automatically ensures the

product separability of the wave function in the non-interacting limit and hence, the

additive separability of the energy, irrespective of the truncation of the T-operators

at some n-body level. This is significantly di↵erent from a configuration interaction

(CI) model which has this property of proper separability at full-CI level but loses it

on truncation [47]. For a lucid exposition of SRCC, we would like to refer to the text

by Crawford and Schaefer [48].

1.4.1 Limitations of SRCC

We have so far discussed the myriad advantages of SRCC. However, as soon as the

applications were expanded to include more and more molecular states, several pit-

falls were encountered. SRCC is not only size extensive, it is also orbital invariant.

It will thus be size consistent as well if the underlying reference function correctly

separates into fragments. However, the Hartree-Fock function, on which SRCC is

based, does not behave correctly under fragmentation unless the fragments are all

closed shell. Thus, in spite of having the redeeming features of size-extensivity and

orbital invariance, size-consistency which is essential for computing potential energy

surfaces (PES) is not achieved.

An issue we might pause to ponder here is: Is there any alternative choice of

the starting function for an SRCC computation ? As a matter of fact, there are

several alternatives [49] among which mention may be made of the “Brückner orbitals”

[50, 51, 52] which are constructed so as to maximize the overlap, h 0|�0i, between the

starting function, �0 and the CC function,  0. Such a construction, would result in

all T1s being zero. However, this construction implies knowledge of the CC function

even before we have begun ! In practice, approximate conditions are used. The

Brückner orbitals are useful only in very special cases where the CC function is of

prime importance. The Hartree-Fock function always provides the best possible energy

at the single determinant SCF level. The Brückner orbitals, however, are often good

for properties other than energy [53] although they o↵er no advantage with regard to

computing PES using SRCC.

The full SRCC, with any starting function, is, of course, an exact theory but like

full-CI it is not practically viable. At the inception, it was believed that a singles-
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doubles or CCSD approximation would su�ce as it modeled the two-body electron-

electron interaction to all orders and this was definitely the most important correlation

with three and higher body e↵ects falling o↵ rapidly. However, this is true only if

the starting function is a reasonably good description of the wave function and it is

only the electron-electron interaction which is missing. The dynamical correlation is

modeled very e↵ectively by SRCC but many molecular states require the inclusion

of non-dynamical/static correlation which is nothing but an inadequacy of a single

determinant to represent the wave function. This implies that the forced use of the

Hartree-Fock function would result in a break-down of the underlying perturbative

structure of the CC theory. The full SRCC theory would still produce the exact cor-

related function but the truncations cease to be physically motivated and systematic.

A hallmark of MR character is that certain T amplitudes for the SRCC become ab-

normally large. By the Brillouin condition of Hartree-Fock theory, the singly excited

functions do not mix at first order which would mean that the T1s are at least of 2nd

order and should hence be small by perturbative arguments. If T1 is large it indicates

a failure of the perturbative argument. The T1-diagnostic (
X

ia

tai ), is thus considered a

marker for MR character of a state although recent experience indicates that a combi-

nation of T1-diagnostic and T2-diagnostic may be a better indicator. As a consequence

T3s which should appear 3rd order onwards are also large and the minimal trunca-

tion for reasonably accurate SRCC energies appears to be CCSDT. The triples being

computationally expensive are often taken partially on perturbative considerations

[43, 44, 45, 46] but this is not enough to account for true MR character. Approaches

involving inclusion of higher excitations such as T [54, 55] or Q [56] or their perturba-

tive approximations [42] have been tried with mixed success and failure. Explorations

using a selected subset of triples and quadruples involving the quasi-degenerate or-

bitals (the so-called CCSDt and CCSDtq methods) [57, 58, 59, 60, 61] which tries

to map an MR description to an SR framework has also met with partial success.

This is, however, expected as these are somewhat artificial approaches. A more phys-

ically motivated formulation would obviously be a CC based on a multi-determinant

function, ie. an MRCC theory where the underlying perturbative assumptions would

strictly hold.

1.5 MRCC: Possibilities and Pitfalls

Before we embark on the plethora of possible MRCCs, we repeat that it is essen-

tial to note that there are two possible reasons necessitating a multi-determinantal

representation of the wave function. The first is the necessity for a solution of the

Schrödinger equation with a spin-free Hamiltonian to be an eigenfunction of the S2

operator which, in general, may not be possible with a single determinant. For ex-
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ample, an open-shell singlet or a triplet with ms = 0 are necessarily combinations of

two determinants. The second situation is when there exist a set of energetically close

determinants which are said to be “quasi-degenerate” such that no function can be

unambiguously given priority over the other as the zeroth order function. The term

“multi-reference” is usually reserved for the latter case while theories dealing with the

former are called “open shell CC” theories. Here it might be mentioned that the first

MRCC theory by Mukherjee et al [62] is called open shell coupled cluster but it is

truly a formalism for multi-reference coupled cluster.

The wave operator in an MRCC theory must act on  0k, as defined in Eq. 1.1,

to convert it to the exact function  k. In principle, it is possible to generate Nd

correlated wave functions starting from an Nd dimensional model space but it is not

necessary that the chosen model space be a self-complete description for all k-roots.

Thus, all k-roots may not be useful or well-described. At this point we are faced with

several possibilities for the wave operator.

Option 1 :

⌦ can be designed to model only a specific state “k” such that only 1 root is

targeted.

 k = ⌦k 0k (1.29)

Such an ⌦ is said to be state-specific and the corresponding MRCC is called “State-

Specific MRCC” (SSMRCC) [63, 64, 65]. The details of ⌦k and the corresponding

working equations o↵er several alternatives with their own advantages and disadvan-

tages. At this point we do not enter into these details.

Option 2 :

⌦ may be parametrized so as to provide all Nd roots. Such an ⌦ will not have a

k-dependence. When all the model functions belong to the same Hilbert space, ie. the

function space for a fixed number of electrons, N, the corresponding MRCC is said to

be a “State Universal MRCC” (SUMRCC) [66, 67] where,

 k = ⌦ 0k 8 k (1.30)

Option 3 :

⌦ may be even further generalized to parametrize states of varying number of
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electrons. Here, the model functions are said to span a Fock space which is a function

space for any number of electrons, n.

 (n)
k = ⌦ (n)

0k 8 k, n (1.31)

Note that ⌦ has no dependence on k or n. Hence, every parameter of ⌦ is computed

once. Additional parameters may be computed for di↵erent k and/or n but no change

in already computed parameters is necessary. Such an Ansätz yields what is called

a “Valence Universal MRCC” (VUMRCC) [62, 68, 69]. A discussion of the essential

aspects of VUMRCC relevant to this thesis is carried out in Appendix A.

Thus, the Ansätz gets more and more general from Option 1 through to Option

3. Historically, however, the development followed the reverse order from Option 3

(1975-78) [62, 68, 69] to Option 2 (1981) [66] to Option 1 (1997) [63, 64, 65]. In order

to demonstrate why and how the scope of the most general VUMRCC Ansätz had to

be narrowed we shall follow the historical route. We must mention, however, that, all

three options have their own strengths and weaknesses and one or the other is most

suitable for a certain type of application. There is, as of now, no “the” MRCC and one

must make a judicious choice of which method to use based on the target applications.

For example, while SSMRCC is most suitable for potential energy surfaces, VU and

SUMRCC are more suitable for spectroscopic parameters like ionization potential,

excitation energy, etc.

Moreover, as a subset of Option 2 or 3, it is possible to parametrize ⌦ for all Nd

roots but only require that fewer roots Np(Np < Nd) which are not prone to intruders

(See Appendix B) are eigenvalues of H thereby bypassing numerical instabilities as well

as deterioration of targeted roots through unnecessary coupling with poorly described

roots. These are called the Intermediate Hamiltonian theories which were originally

proposed by Kirtman [70] and expanded by Malrieu et.al. [71, 72] but were not size-

extensive. Later developments by Mukherjee [73, 74, 75], Malrieu [76, 77, 78, 79] and

others [80, 81, 82, 83] lead to size-extensive formulations.

We should most definitely mention that the enlistment of the three options above

is by no means exhaustive. These are the three main routes that can be adopted but

hybrid methods such as “Quasi-Fock” or “Quasi-Hilbert” also exist [84, 85, 86] and

may be more suitable alternatives for some problems of interest.

1.5.1 MRCCs in Fock-space

VUMRCC [62, 68, 69] is well-suited to computation of energy di↵erences especially

between states with varying number of electrons, eg. ionization potentials and electron

a�nities. The theory exploits the fact that the wave function in occupation number

representation only depends on orbitals and not on the number of electrons. Thus
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conceiving ⌦ as in Eq.1.32 to be independent of k and n (viz. Eq. (1.31)) is perfectly

valid.

⌦ = eT (1.32)

Moreover, the Subsystem Embedding Condition (SEC) (see Appendix A) allows a

clean identification and separation of lower valence sector energies in the higher valence

sector expressions thereby allowing us to analytically drop the energy of the state

with respect to which we require the energy di↵erence. This improves the accuracy

as common terms exactly cancel and the theory models the energy di↵erence directly.

VUMRCC has achieved much success in the determination of ionization potentials,

electron a�nities and excitation energies.

The construction of PES using VUMRCC is, however, fret with di�culties arising

from the so-called “Intruder Problem” [87, 88] which is discussed in Appendix B.

In some specific cases the problem may be alleviated by using an IMS [89] but this

requires a consideration of the normalization of ⌦ for maintaining size-extensivity

[90, 11, 91, 92] which is discussed in Appendix C and Sec. 2.1.3.

A very clean way of alleviating the intruder problem in VUMRCC is by casting

the equations as a matrix eigenvalue problem. Two paths are available for casting a

non-linear set of equations into a matrix eigenvalue problem. The first is the “Eigen-

value Dependent Partitioning” of Löwdin [93, 94] and the second is the “Eigenvalue

Independent Partitioning” which was proposed for VUMRCC by Mukherjee [73]. This

method combines the advantages of a CI-like solution strategy with the accuracy and

size extensivity of an MRCC.

The linear response theory (LRT) approach is a general framework for response

properties of a wave function. This class of theories for computation of energies may

be perceived as a subset of the VUMRCC theory. The CC-LRT [95, 96, 97, 98] has

been widely applied to the computation of excitation energies and properties at the

CC level. One of the simplest applications is, of course, the determination of dif-

ferences of state energies as poles of the linear response function. This particular

response equation for energy di↵erences can be recast as the Equation-Of-Motion CC

(EOM-CC) equation [99, 100, 101, 22] (see Appendix F). A very similar but indepen-

dently developed formalism called Symmetry Adapted Cluster Configuration Inter-

action (SAC-CI) was proposed by Nakatsuji [102, 103]. The CC-LR [95, 96, 97, 98],

SAC-CI [102, 103] and EOMCC [99, 100, 101, 22] approaches are conceptually and

structurally very similar and may be generically known as SRCC based linear response

theories (SR-LR). These methods mainly di↵er in their computation of transition

probabilities connecting the ground and the excited/ionized states. Common charac-

teristic features of all SR-LR theories are: (a) they assume single reference character

of the GS and (b) the methods are core extensive only unlike the VUMRCC which is

fully extensive. Linear Response theories with an MR starting function, the MR-LRT
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[104, 105] and MR Equation of Motion (MREOM) approaches [106, 107, 108, 109, 110]

have also been developed. A related theory, somewhat in-between a full VUMRCC

and an EOM approach is the STEOM-CC of Nooijen and Bartlett [111, 112, 113]

which can also handle the excited/ionized states size extensively but di↵ers in the

details of implementation from VUMRCC.

The problem with VUMRCC is that it generates much more information than we

need making it all the more prone to problems which may have no bearing on the state

of interest but would prevent us from computing it. In view of the intruder problem

and SEC the generation or requirement for too much information is often more of a

curse than a blessing in spite of the generality and elegance of the formulation.

1.5.2 MRCCs in Hilbert Space

A somewhat more intuitive approach is to only consider a Hilbert space of many-

electron functions for a fixed number of electrons. This was first suggested by Jeziorski

and Monkhorst [66] who used a multi-exponential wave operator Ansätz defined in

Eq.1.33, now commonly known as the Jeziorski-Monkhorst (JM) Ansätz.

 k = ⌦ 0k =
N

dX

µ=1

eTµ |�µi cµk (1.33)

When this Ansätz is used in the Schrödinger equation to solve for all Nd roots, the

resulting theories are called SUMRCC theories while a solution for one root results in

an SSMRCC theory.

A middle path between VUMRCC and the SUMRCC may be adopted leading to

the so-called Quasi-Fock and Quasi-Hilbert space theories [84, 85, 86] which enables

the direct computation of energy di↵erences between states of same or di↵erent elec-

tron number without the need to go through all intermediate valence sectors. Such

approaches have been found to be useful especially for the computation of excita-

tion energies without the need to compute the ionization potentials (IP) and electron

a�nities (EA).

The strength of the JM Ansätz may be perceived through the following consider-

ation. We have so far discussed Ansätze where the excitation operators are always

defined with respect to a single closed shell function (say, having N electrons) which

may or may not feature in the model space for the target functions and bear only

orbital labels. Let us consider a situation where we have two model functions, �µ and

�⌫ having N-1 electrons:
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|�µi = au|�0i (1.34)

|�⌫i = av|�0i (1.35)

Excitations, say, T a
i , should have di↵erent amplitudes for the two model functions.

In the case of any valence-universal Ansätz, as discussed above, the di↵erence is

ensured by certain spectator containing operators of higher rank, for example, T au
iu

for �µ and T av
iv for �⌫ . However, with increase in active orbital occupancy, the rank

of the operators keep increasing making it impractical. The JM Ansätz is much more

compact as it simply introduces a model function dependence on the T-amplitudes.

The normal ordering of the T-operators defined in terms of spinorbitals was con-

ceived by Jeziorski and Monkhorst [66] to be with respect to the corresponding model

functions. Thus, the Tµs commute with each other but not with the T⌫s. When this

Ansätz is used in a state-universal context as in Eq. (1.30) there are as many equations

as there are unknowns and there is hence, no redundancy. However, when it is used

in the state-specific context as in Eq. (1.29) there are less equations than there are

unknowns necessitating the use of su�ciency conditions to solve the equations. The

choice of these su�ciency conditions is guided by considerations of size extensivity,

avoidance of intruders and a correct perturbative structure. The SSMRCC proposed

by Mukherjee (called Mk-MRCC) satisfies all three criteria. The BW-MRCC, devel-

oped by Más̆ik and Hubac̆ [114] uses a di↵erent su�ciency leading to a size-inextensive

SSMRCC but this is free of intruders as long as the energies of the virtual functions are

well separated from the target energy of the system. This was further extended by Pit-

tner et al. who attempted to restore size-extensivity [115, 116, 117] but this resulted

in a resurfacing of the intruder-problem. A Coupled Electron Pair Approximation

(CEPA)-like formalism was developed by Malrieu et al. [118] where a suitable ‘dress-

ing’ of an MRCISD matrix leads to the elimination of the size-inextensive terms. This

has a deep structural resemblance to the CEPA variant of the Mk-MRCC [119, 120]

but cannot be easily extended to the full CC theory, presumably because it starts from

a formulation which is inherently quasi-linearized. In the MRexpT theory of Hanrath

[121, 122, 123], the redundancy problem is side-stepped by an ‘anonymous parentage

approximation’ for the t-amplitudes leading to only a core-extensive theory but with

reasonably good accuracy. Approaches involving the use of reference-independent in-

active cluster amplitudes [124, 125] are useful on grounds of computational e�cacy but

since, the inactive cluster amplitudes are non-redundant, the problem of redundancy

of the other amplitudes remains.

The JM Ansätz su↵ers from two major di�culties. The first is the lack of invariance

of the energy under rotation of orbitals making it size-inconsistent in general. The
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use of localized orbitals can give size consistent behavior [126] but restoring orbital

invariance in the JM Ansätz seems di�cult. The second is the lack of “complete

coupling” [123, 127] between the excited space functions. By this we mean that under

a given truncation scheme of the T operators, not all model functions are treated on

the same footing. For example, in a CCSD truncation scheme, an excited function, �l,

may be reachable from �µ by a T2 but can be reached from �⌫ only by a T3 which is

absent in our scheme of things. Thus, the coupling of �µ and �⌫ via �l is incomplete.

In strongly multireference situations this has been shown to play a very important

role [128].

Another aspect of the spinorbital-based JM Ansätz is the spin contamination which

is characteristic of any spinorbital-based non-linear Ansätz. Even if the T-operators

in spinorbital basis are adapted to a particular spin (non-singlet), their powers are

not. To solve this problem, we have introduced a modified JM Ansätz which is uni-

tary group adapted, leading to the UGA-SUMRCC [129], UGA-QFMRCC [130] and

UGA-SSMRCC [131]. The first two theories have been discussed in detail in the

subsequent chapters and form the focus of this thesis. UGA-SSMRCC is closely re-

lated and references will be made to it when applicable. These MRCCs using the JM

Ansätz constitute the class of Decontracted MRCC theories. This class of theories

is generically plagued by the problem of redundancy of cluster amplitudes and the

lack of invariance of the energy with respect to rotation of active orbitals. Both these

problems stem from the model-function dependence of the cluster amplitudes and

hence, are inherent to the JM Ansätz. Being an e↵ective Hamiltonian theory, SUM-

RCC su↵ers from the intruder problem making it di�cult to use it for constructing

PES. E↵orts to alleviate this problem by using incomplete model spaces have been

explored with mixed success and failure [132, 133, 134]. However, it is well-suited

for computation of energies and properties at equilibrium whether with a CAS or

an IMS [67, 135]. The state-specific theories are, on the other hand, geared towards

computation of PES.

For completeness, we should mention that a second approach is possible for con-

struction of an SSMRCC, viz. use of a single exponential Ansätz acting on a com-

bination of the model functions (see Eq. (1.36)). This class is constituted by the

Contracted MRCC theories. This class of theories has the potential to overcome both

the problems mentioned in the previous para. However, the definition of T-operators

for an MR function and the subsequent theoretical considerations presents a new set

of challenges.

The Ansätz for an internally contracted CC function, originally proposed by Baner-

jee and Simons [136, 137] can be written as:

| ki = ⌦ | ki = eT
X

µ

|�µi cµk. (1.36)
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However, they overlooked the importance of selecting a linearly independent manifold

of excitation operators and also discarded some physically important classes of T-

operators leading to a somewhat incomplete theory. The first complete MRCC theory

using this Ansätz was developed by Mukherjee [138, 139] and Mukherjee et al. [64] and

was named the Internally Contracted Multi-Reference Coupled Cluster (ICMRCC)

theory. This theory required the use of the concept of a ‘Generalized Normal Ordering’

(GNO) [138, 139] which is a normal ordering with respect to an MR function such that

the expectation value of the normal-ordered operator for the reference MR function

is zero. Further work was carried out by Evangelista et al. [140, 141] as well Hanauer

and Köhn [142]. The issue of size-extensivity proved tricky and elusive but was finally

resolved by very careful analysis of the working equations and was found to be crucially

dependent on the use of the GNO for the T-operators as also the scheme for selecting

the manifold of linearly independent T-operators [143]. A spin-adapted ICMRCC,

the UGA-ICMRCC, has also been recently proposed from our group [144]. Unlike

in the internally contracted MRCI approaches [145, 146], the combining coe�cients,

cµk, are not fixed at a pre-determined value but can be obtained self-consistently in

presence of electron correlation. Consequently, the manifold of linearly independent

T-operators can also not be predetermined.

1.6 Spin Adaptation of the CC Ansätz

An eigenfunction of a spin-free Hamiltonian ought to be an eigenfunction of the S2

operator. While richer Hamiltonians with relativistic terms do not have this require-

ment, a breakdown of the spin eigenfunction nature of the wave-function while using a

spin-free Hamiltonian must be an artifact arising from an erroneous treatment of the

problem. It is well documented that spin contamination plays a rather significant role

in the loss of accuracy of state energies and that it plays a vital role in the computed

properties of molecules. Thus, spin adaptation of a many-body wave-function has

been the subject of much research with the focus not only on spin adaptation as such

but also on a workable scheme for actual computation.

In correspondence with the Pauli exclusion principle, a many-electron wave-function

is anti-symmetric under both exchange of space-spin coordinates of electrons and in-

terchange of the spinorbitals comprising it. Of course, the simplest of such functions

is a Slater determinant. This satisfies the Pauli principle, but - except for special

situations - is not an eigenfunction of S2. This leads to a bigger dimension of the

Hilbert space for the matrix of the Hamiltonian, which in some anti-symmetric func-

tions with a fixed spin would have led to a block-diagonal form corresponding to each

value of the spin. The simplest of such functions consists of a spacial function,  , and

a spin function, ⌃, and is known as a configuration state function (CSF). A CSF can
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be denoted by a generic function,  :

 = A ⌃ (1.37)

Moreover, since the NR Hamiltonian does not a↵ect the spin part of the wave-function,

the Schrödinger equation indicates that the wave-function,  , in an NR situation can

be factorized into a spatial part,  and a spin part, ⌃.

 =  ⌃ (1.38)

where the overall anti-symmetry of  is ensured by choosing  and ⌃ belonging

to adjoint irreducible representations (IRREPs) of whatever group is used for spin

adaptation. The most obvious scheme for spin adaptation of the full wave-function

is thus, to simply augment  with a ⌃ of a given spin. At this point, it becomes

important to realize that S2 has degenerate sets of eigenfunctions making the selection

of ⌃ non-unique. One might also wish that the functions selected with the same S2

value are orthogonal to each other. Keeping the desire for orthogonality in mind, one

option is to use Clebsch-Gordon coe�cients from the SU2 group, wherein di↵erent

functions with the same S2 value, but di↵erent spin-coupling schemes, transform as

bases for di↵erent IRREPs. Here, the basis functions for a given IRREP form an

orthonormal set, and additionally the basis functions belonging to di↵erent IRREPs

are also orthogonal. Several interrelated spin-coupling schemes exist in the literature

and a comprehensive review may be found in the books by Pauncz [147, 148]. If we

relax the requirement of orthogonality, valence bond functions may also be brought

within this ambit. A second option is to use the fact that the indistinguishability of

electrons implies that an N-electron wave-function belongs to the symmetric group

(also called permutation group, SN). It can be shown by the Dirac identity that

the permutation and spin operators are related [148]. Thus, in order to obtain a

spin adapted  , we may exploit the equivalence of using the spin-symmetry of ⌃

via the SU2 group (first option) and the permutational symmetry of  employing

the symmetric group SN and obtain a spin-free formalism such as that of Matsen

[149]. The spin-part of the wave-function is entirely determined by the adjoint of

the IRREP of SN to which the spatial part belongs. Both these approaches get

more and more complicated with increasing number of electrons and the handling of

the coupling co-e�cients whether from the spin-coupling schemes or the SN group

becomes computationally ine�cient.

A third, and till date the most promising, approach is to use another symmetry

of the many-electron wave-function – its anti-symmetry under interchange of spinor-

bitals. An interchange of spinorbitals amounts to a special unitary transformation

of the spinorbital basis and hence an N-electron wave-function belongs to the anti-
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symmetric IRREP of the unitary group, U(2N). It was shown by Paldus, inspired by

the works of Moshinsky [150] in nuclear physics, that to express any spin-independent

particle number conserving operator in terms of generators of the unitary group, such

as the non-relativistic Hamiltonian, it is only necessary to use the sub-group U(N)

thereby obtaining a factorized representation in the IRREPS of U(2N) � U(N)⇥U(2)

for the full  . A comprehensive exposition of the use of the unitary group for spin-

adapting wave-functions and its relationship with the other two approaches, viz. the

SU2 and SN groups can be obtained in the book edited by Hinze [151]. The most

prominent advantage of the unitary group is that a very e�cient method is avail-

able for the evaluation of matrix elements of generators of the unitary group between

functions belonging to two IRREPs of U(N) by representing the bra and ket func-

tions graphically, as shown by Shavitt [152, 153], and this facilitates such evaluations

enormously. This transcription is known as the Graphical Unitary Group Approach

(GUGA) [152, 153].

A major challenge for treating open shell and multi-reference systems (whether

SR or MR) at the coupled cluster level is the spin adaptation of the wave function

when it is parametrized by a non-linear Ansätz. For single determinant open shell

states one usually adopts a spin-orbital based theory to achieve natural termination

at the quartic level and it is well known that this leads to spin-broken solutions

[154, 155, 156, 157]. The spin adaptation of the CC Ansätz in the SR domain has

been and still is a subject of active research [158, 45, 159, 160, 161, 162, 163, 164, 165,

166, 167, 168, 169, 170]. For SRCC formulations using spinorbitals based on a high

spin single determinant, a spin restricted formulation [167] satisfying the constraint of

preserving the expectation value of S2 and a spin adapted formulation [169] forcing the

eigenfunction nature of the coupled cluster function with respect to S2 were suggested

but lead to rather unwieldy working equations for the cluster amplitudes. These days,

for SRCC formulations for non-singlet cases, the spin contamination arising out of a

spinorbital based formulation is tolerated, mostly for reasons of simplicity [154, 156].

The unitary group gave a fresh impetus to these e↵orts. A significant step forward

was accomplished by Jansen and Schaefer [159] who used generators of the unitary

group to define spin-free cluster operators for high spin single reference non-singlet

states. A more compact and elegant formulation along a similar vein was put forward

by Li and Paldus [162, 171] for a single configuration state function (CSF) as the

reference. Some detailed Lie algebraic aspects of the unitary group adapted (UGA)

SRCC, based on one CSF were also analyzed by Jeziorski, Paldus and Jankowski

[172]. Li and Paldus have extensively worked on several aspects of UGA theories

[173, 162, 174, 165, 175, 176, 177, 178]. As we shall discuss in greater detail later (Chp.

2), the use of spin-free generators necessarily introduces non-commuting excitation op-

erators rendering the Baker-Campbell-Hausdor↵ (BCH) expansion non-terminating.
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Clearly, one needs to abandon the exponential parameterization for ensuring a spin-

free formulation while ensuring the termination of the coupled cluster equations at

the quartic power.

At the MRCC level, the degree of di�culty of spin adaptation depends on the

class of MRCC theory one wants to adapt to the proper spin. Among the three

major approaches to MRCC, namely, valence universal (VUMRCC or FS-MRCC)

[62, 68, 69], state universal (SUMRCC) [66] and state specific (SSMRCC) [63, 64, 65],

only the VUMRCC is inherently spin adapted. On the other hand, the Jeziorski-

Monkhorst (JM) Ansätz [66] used in the last two types of MRCC theories, is not

inherently spin adapted and in a truncated coupled-cluster scheme results in spin

broken solutions for non-singlet states. The spin adaptation of the JM Ansätz has

received considerable attention, concurrently with the spin adaptation of the SRCC

function for open-shell states [179, 180, 162, 164, 181, 182, 131, 129, 130, 183].

The most recent endeavor in this direction has been the use of the normal ordered

JM-like Ansätz with cluster operators defined in terms of generators of the unitary

group, first introduced by Maitra et.al. [131] in the context of the so-called UGA-

SSMRCC. The model functions in this approach are Gel’fand adapted and to indicate

this the method was termed as a Unitary Group Adapted SSMRCC (UGA-SSMRCC)

theory. It combines the twin advantages of the avoidance of spin contamination and a

natural termination of the so-called ’direct’ term at the quartic power of the working

equations of the SSMRCC theory. In this thesis, following an early lead by Mukherjee

and Zaitseveskii [184] we are led to the same Ansätz to formulate a UGA-SUMRCC

[129] theory which also shares the desirable properties of absence of spin contamination

as well as termination of the direct term at the quartic power. We should mention here

that, another spin-free generalization of the JM Ansätz using generators of the unitary

group was suggested by Datta and Mukherjee known as the Combinatoric Open-Shell

SUMRCC (COS-SUMRCC) [181] and the COS-SSMRCC [182], which is structurally

closer to the parent spin-orbital based JM Ansätz and is thus probably the closest spin-

free analogue of JM based MRCC theories. The applications thereof [181, 182, 185]

are still confined to one valence problems, although generalization to encompass multi-

valence situations are expected to indicate the potentiality of the approach. As things

are at present, the UGA-based SU and SSMRCC [131, 125, 129, 130] appear to be

simpler alternatives.

1.7 Scope of the Thesis

We want to present in this thesis a general spin free approach for computation of

excited or ionized state energies. The state universal framework is chosen for our

developments and the unitary group approach is used to spin-adapt the non-linear
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JM Ansätz leading to the Unitary Group Adapted State Universal MRCC (UGA-

SUMRCC). A related Ansätz is used to formulate a theory allowing direct compu-

tation of energy di↵erences between a closed shell ground state and an excited or

ionized state leading to what we call the Unitary Group Adapted Quasi-Fock MRCC

(UGA-QFMRCC). Our e↵orts in UGA-QFMRCC are directed towards the formula-

tion of a theory for calculation of direct energy di↵erence for the target sector with

respect to the GS without going through intermediate valence sectors. Thus, in our

strategy, the computation of excitation energy does not involve a prior computation

of ionization energy and electron a�nity. For both theories, the formulations consider

the possibility of using IMSs in general and intermediate normalization has not been

assumed in order to prevent loss of size extensivity. We have also formulated the an-

alytic gradients for the single CSF limit of UGA-SUMRCC which we call the Unitary

Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. To indicate the

accuracy to be expected from it we have carried out some representative computa-

tions of low order electric properties viz, dipole moment and polarizability of a set of

neutral radicals using the numerical gradient technique.

In this thesis we will not only formulate the UGA-SUMRCC and UGA-QFMRCC

theories for both complete and incomplete model spaces and benchmark them but

also explore several aspects of the theories:

(i) The first issue pertains to analyzing our choice of cluster operators vis-a-vis those

used by Li and Paldus [162] to formulate SUMRCC in a UGA framework. In particu-

lar we will show that suitable linearly independent cluster operators can be discerned

from simple perturbative reasoning although they will no longer lead to orthogonal

excited functions. In e↵ect, for singles-doubles truncation scheme the combination

appears to be the same using the perturbative analysis in comparison with explicit

SU2 adaptation. One avenue which we shall look into is the possibility of deliberately

using certain redundant cluster operators and concomitantly using suitable su�ciency

conditions to supply the working equations. We carry out comparative studies of pro-

jection equations with linearly independent operators against the use of su�ciency

conditions with a linearly dependent manifold. An alternative path of using ampli-

tude equations instead of the projection equations is also explored.

(ii) We shall also try to assess the extent of orbital relaxation and correlation re-

laxation e↵ects achievable through our parametrization vis a vis a Fock-space like

approach at one end and a COS-CC approach on the other. This study is undertaken

in the context of core electron ionization and excitation where these e↵ects are largest.

(iii) The third issue we will look into is to assess the performance of the UGA-

SUMRCC for state energy against the UGA-QFMRCC.

(iv) We will also discuss in detail several aspects of connectivity and size extensivity of

the parent UGA-SUMRCC and the consequent size intensivity of the excitation ener-
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gies from UGA-QFMRCC. The occurrence of reduced density matrices in the working

equations introduces several non-trivial aspects into the proof of size-extensivity and

we discuss why and how the issues of connectivity of operators and extensivity of the

amplitudes must be carefully distinguished in general. A study of the performance of

all our proposed variants across a chosen set of small molecules is undertaken. We try

to assess the trends in energies computed using UGA-SUMRCC and its approximants

along a series of bases of increasing size. Statistical data in a reasonable sample space

is provided for a more objective analysis.

We have partitioned the rest of this thesis into four major chapters. Chap. 2 deals

with the formulation and exploration of the UGA-SUMRCC and UGA-QFMRCC in

all its forms. Chap. 3 discusses the aspect of orbital relaxation built into our for-

malisms in the context of ionization and excitation of electrons especially the core

electrons. The role of scalar relativistic e↵ects in the ionization of core electrons from

medium-heavy atomic centers is also studied. In Chap. 4 we develop the analytic

gradients for computation of molecular properties using the UGA-OSCC formalism

and compute dipole moments and polarizabilities via the numerical gradients of UGA-

OSCC. In the next chapter, Chap. 5, the non-trivial algorithmic aspects of our suite

of UGA-MRCC theories and their gradients is discussed along with details of imple-

mentation. We conclude in Chap. 6 with a summary of the thesis and a brief outlook

on future avenues of development which we wish to explore.
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2.1 Formulation of the Theories

In this chapter, we develop two spin-free MRCC theories for computing ionization

and excitation energies. The first approach involves computation of the energy of the

ionized/ excited state in a state-universal context, called the Unitary Group Adapted

State Universal MRCC (UGA-SUMRCC) (see Sec. 2.1.1). The second approach is

a spin-free valence-specific formulation for direct energy di↵erences with respect to a

closed shell ground state, which we call Unitary Group Adapted Quasi-Fock MRCC

(UGA-QFMRCC) (see Sec. 2.1.2). Both these approaches share the advantages of

being capable of handling open shell ionized and excited states without spin contam-

ination, while maintaining the natural truncation of the direct term and hence, the

ease of implementation. The theories are manifestly size-extensive and the modifi-

cations for using incomplete model spaces (IMS) without losing this feature are also

discussed.

2.1.1 UGA-SUMRCC

The original spinorbital-based JM ansatz for ⌦ for the various states  k, where

 k = ⌦ 0k (2.1)

and

 0k =
X

µ

�µcµ (2.2)

is given by:

⌦ =
X

µ

⌦µ|�µih�µ| (2.3)

with

⌦µ = eTµ (2.4)

As discussed in Chap. 1, this set of Tµ operators are normal-ordered with respect

to �µ and hence, commute with each other although they do not commute with the

operators T⌫ of any other model function �⌫ .

A re-definition of the T-operators as generators of the unitary group in order to

obtain a spin-free theory with a non-linear Ansätz simply means that the operators

accompanying the cluster amplitudes are now expressed as spin-summed strings of

creation and annihilation operators. This is equivalent to considering the cluster op-

erators to be labeled by spatial orbitals. The representation of the T-operators using

spin-free excitation operators makes the Ts non-commuting as the singly occupied

orbital labels occur both as creation and annihilation operators. We thus introduce a

normal ordering, {...}, of the exponential Ansätz which operationally reinstates this
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commutativity and plays a vital role in making this theory amenable to implementa-

tion for arbitrary valence sectors and active spaces. The spin-free analogue of the JM

Ansätz for ⌦µ which we propose to use in this thesis is thus:

⌦µ = {eTµ}. (2.5)

The curly bracket above indicates normal ordering with respect to a suitable closed

shell vacuum |0i. The state |0i is taken in UGA-SUMRCC theory to be the closed

shell ‘core‘ determinant containing doubly occupied inactive orbitals common to all

the �µs. For example, we will choose our vacuum, |0i, as the HF ground state of

the system for excited and ionized states dominated, respectively, by h-p and 1h/1p

functions relative to it. The �µs are unitary group adapted Gel’fand Configuration

State Functions (CSF) [1] generated from the vacuum state |0i by unitary group

adapted Gel’fand creators. We use the Graphical Unitary Group Approach of Shavitt

[2, 3] to construct matrix elements between these Gel’fand CSFs. The excited states

in our formulation are generated by the action of spin-free generators of the unitary

group ({✏lµ}), acting on �µ:

|�l
µi = {✏lµ}|�µi (2.6)

where {✏lµ} are in normal order with respect to |0i. The functions �l
µ are CSFs but

they are neither Gel‘fand states nor the SU2 adapted CSFs of Li and Paldus [4]. {✏lµ}s
are linearly independent specific combinations of spatial orbital replacement operators,

{El
µ}, which are generators of the unitary group. The final working equations involve

matrix elements between �µs wherein reduced density matrices (RDM) appear which

incorporate the spin information of the target state and hence how we choose the

excited CSFs do not play an important role.

Using this new Ansätz in the Schrödinger equation we are led to the following

equations:

H | ki = Ek | ki 8 k

{H}
X

µ

{eTµ} |�µi cµk = Ek

X

µ

{eTµ} |�µi cµk

X

µ

{eTµHµ}|�µicµk =
X

µ⌫

{eT⌫eT⌫W⌫µ}|�µicµk

X

µ

{eTµHµ}|�µicµk =
X

µ⌫

{eTµe�T
µeT⌫eT⌫W⌫µ}|�µicµk

X

µ

{eTµHµ}|�µicµk =
X

µ⌫

{eTµY⌫µ}|�µicµk (2.7)
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where

Hµ = HeTµ (2.8)

is a compact notation of the series:

Hµ = {H}+ {HTµ}+
1

2
{HT µTµ}+ ... (2.9)

and

Y⌫µ = e�T
µeT⌫eT⌫W⌫µ (2.10)

The ‘contraction’, AB, connecting two strings of operators A and B denotes sum of

all possible contractions involving all pairs of operators from both A and B. Terms

like {HT µTµ}, etc. involve contractions between H and the various Tµs excluding

contractions between the operators of di↵erent Tµs. The operator, W⌫µ, is a closed

operator labeled by orbitals distinguishing �µ and �⌫ . It transforms �µ to �⌫ via the

relation:

W⌫µ|�µi = |�⌫ih�⌫ |Heff |�µi (2.11)

It is composed of operators of various ranks, the lowest rank being the number of

orbitals by which µ and ⌫ di↵er. W⌫µ may also contain components with any number

of spectator scatterings involving creation and destruction of common active orbitals

of �µ and �⌫ , resulting in the ranks of the operator being higher. The spectators need

not all be diagonal, it is only essential for the group of destruction operators to be the

same as the group of creation operators, the labels being that of the common orbitals

of µ and ⌫.

Applying Wicks’ theorem in reverse on the LHS of Eq. 2.7 successively, we get,

LHS =
X

µ

[{eTµ}{Hµ}� {eTµeTµHµ}]|�µicµk (2.12)

=
X

µ

[{eTµ}{Hµ}� {eTµ}{eTµHµ}+ {eTµ eTµeTµ Hµ}]|�µicµk (2.13)

We can factorize {eTµ} by further iterating the factorization in Eq. 2.13

This can go on generation by generation depending on the number of active de-
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structions possible. To use a compact notation we can denote this chain as:

LHS =
X

µ

[{eTµ}{e✓Hµ}]|�µicµk (2.14)

=
X

µ

[{eTµ}{Xµ}]|�µicµk (2.15)

where,

{e✓} = {1� Tµ + TµTµ +
1

2!
TµTµ �

1

2!
TµTµTµ �

1

2!
TµTµTµ +

1

2!
TµTµTµTµ � ...} (2.16)

with

✓ = {�Tµ + TµTµ � ...} (2.17)

and {e✓Hµ} has been denoted as {Xµ} in Eq.2.13 . The structure of the connected

composite ✓ in Eq. 2.17 and the representation of the sum of all composites in {Xµ} as

{e✓} connected to H̄µ requires careful consideration. We first note that any composite

in {Xµ} with a given power of Tµ and of a given topology can come from terms of

di↵erent generations of contractions with ✓ and a global view of the combinatoric

factors leads to the exponential structure, {e✓}. The details of this algebra have been

explained with an example in Appendix D.

Similarly, the RHS can be written as:

RHS =
X

µ⌫

[{eTµ}{e✓Y⌫µ}]|�µicµk (2.18)

yielding the full equation:

X

µ

[{eTµ}{e✓Hµ}]|�µicµk =
X

µ⌫

[{eTµ}{e✓Y⌫µ}]|�µicµk (2.19)

In SUMRCC, there is no discrepancy in the number of cluster amplitudes and

the number of working equations. Moreover, one may use the invertibility of the

coe�cient matrix to separate out Eq. 2.19 for each µ.

X

µk

[{eTµ}{e✓Hµ}]|�µicµk[c�1]�k =
X

µ⌫k

[{eTµ}{e✓Y⌫µ}]|�µicµk[c�1]�k (2.20)

X

µ

[{eTµ}{e✓Hµ}]|�µi�µ� =
X

µ⌫

[{eTµ}{e✓Y⌫µ}]|�µi�µ� (2.21)

{eT�}{e✓H�}|��i =
X

⌫

[{eT�}{e✓Y⌫�}]|��i (2.22)
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Canceling {eT�} from LHS and RHS in Eq. 2.22 and writing � as µ, the working

equation for the amplitudes is simply Eq.2.23:

{e✓Hµ}|�µi �
X

⌫

{e✓Y⌫µ}|�µi = 0 (2.23)

As we have mentioned, our focus is on electron attached/detached and excited

states of closed shell ground states, which can be considered as 1-particle (1p)/1-hole

(1h) and 1-hole-1-particle (1h-1p) sectors with respect to the closed shell state con-

sidered as vacuum respectively. 1h and 1p model spaces are by construction complete

(ie. CMS/CAS). The 1h-1p model spaces are said to be “quasi-complete” [5] which

is a special case of incomplete model spaces (IMS). In this section, we present the

working equations when using a CMS and then discuss the necessary modifications

for using an IMS.

For CMS, all the T-operators take us from the model space spanned by the �µs

to the virtual space spanned by the �l
µs and may be called “open” (op) operators. In

contrast, W⌫µ may be called “closed”. To get the final working equations, Eq. 2.23 is

simply projected by the excited functions to yield Eq. 2.24 which are called projection

equations.

h�l
µ| {e✓Hµ}|�µi �

X

⌫

h�l
µ| {e✓Y⌫µ}|�µi = 0 (2.24)

It was found that approximating e✓ to its first term, ie. one, is su�cient, with changes

of the order of µH for higher order approximations, and hence, operationally the

working equation we use is:

h�l
µ|{Hµ}|�µi � h�l

µ|
X

⌫

{eT⌫

�T
µeT⌫W⌫µ}|�µi ⌘ Rex,lµ = 0 (2.25)

For ease of reference we define the composite Gµ at this stage as,

Gµ = {Hµ}�
X

⌫

{eT⌫

�T
µeT⌫W⌫µ} (2.26)

and write the generic working equation in compact notation as,

Rex,lµ = h�l
µ|Gµ|�µi = 0 (2.27)

Analogously we get,

R�µ = h��|Gµ|�µi = 0 (2.28)

which provides us with the expression for the e↵ective Hamiltonian when the model
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space is complete.

When the model space is incomplete, R�µ actually has one portion which is nec-

essary to introduce new cluster operators which are labeled by active lines only for

maintaining size extensivity of the energy. The rest of the components of R�µ are

used to define the e↵ective Hamiltonian (see Sec. 2.1.3).

An alternate derivation starting from the Bloch equation [6] also leads to the same

final working equation. This route was followed in our publication [7]. Eq. 2.25 is to

be used for determining the cluster amplitudes of Tµ.

We note that, the first term, which we henceforth call the “direct term”, will

necessarily truncate at quartic power in all situations. However, the termination of

the second, the so-called, “coupling term”, will depend on the rank of the valence

sector under consideration. Since, the working equations are projection equations

rather than amplitude-equations (as is commonly used for most CC theories), they

involve the occurrence of RDMs which carry the spin information of the targeted

molecular states. This feature also complicates the proof of size-extensivity as the

RDMs are neither connected nor extensive quantities.

Projecting Eq. 2.19 with the model functions yields the definition for the e↵ec-

tive Hamiltonian to be diagonalized to get the targeted state energies without any

approximation being required.

X

µ

h��| [{eTµ}{e✓Hµ}]|�µicµk =
X

µ⌫

h��| [{eTµ}{e✓Y⌫µ}]|�µicµk (2.29)

X

µ

h��| {Hµ}|�µicµk =
X

µ⌫

h��|�⌫iHeff ⌫µcµk (2.30)

X

µ

h��| {Hµ}|�µicµk =
X

µ

Heff�µcµk = Ekc�k (2.31)

) Heff�µ = h��| {Hµ}|�µi (2.32)

In going from Eq. 2.29 to Eq. 2.30 we have considered the fact that when acting

on a CMS the Ts themselves as well as their products always lead outside the model

space. We also note that the same expression for Heff could have been obtained by

equating the projection of Gµ, defined in Eq. 2.26, onto the model space to zero (ie.
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Rcl�µ = 0) as shown below.

Rcl�µ = 0

h��| {Hµ} |�µi =
X

⌫

h��| {eT⌫

�T
µeT⌫W⌫µ} |�µi

=
X

⌫

h��| {W⌫µ} |�µi

=
X

⌫

h��|�⌫iHeff ⌫µ

= Heff�µ (2.33)

We will see in Sec. 2.1.3 how this will turn out to be useful for working in an IMS.

2.1.2 UGA-QFMRCC

The inspiration for the UGA-QFMRCC theory comes from the development of the

parent UGA-SUMRCC [7] and the earlier Quasi-Fock theory of Mukhopadhyay and

Mukherjee [8]. In the parent UGA-SUMRCC theory, the t-amplitudes required were

only those for the target valence sector (say, excited state). Here, our aim is not to

obtain the state energy itself but the energy di↵erence with respect to a subduced

valence sector (say, ground state). The benefit of a correlated theory for obtaining

energy di↵erences directly lies in the exact analytic cancellation of the common cor-

relation energy of the two states, leading to a treatment of the common correlation

terms of both states on equal footing even under truncated schemes.

The theory for computing energy di↵erences with respect to the ground state

requires an appropriate parametrization of the wave operator where cluster operators

inducing correlation of the ground state should also appear explicitly. We use the

notation (m,n) to denote an mh-np valence sector and T (m,n) to denote the cluster

operators thereof. The theory we will use in this respect first computes the amplitudes

for the (0,0) valence sector which generates the cluster operators of the ground state

and then�quite unlike the approach of the Fock Space theory�directly computes the

amplitudes for the target (m,n) (say,(1,1)) sector. In the FS-MRCC theory, in contrast

we would have had to build the target ⌦ hierarchically, starting from the (0,0) sector

of the Fock Space, which is spanned by the HF function, taken as the vacuum. The

operators T (1,0) and T (0,1) respectively are constructed in the next stage of solution

which provide information of the (1,0) and (0,1) sectors of the Fock Space. Next

comes the operators T (1,1) of the target sector, viz. the h-p model space. Our theory

bypasses the (1,0) and the (0,1) sectors, and this is the reason why such a theory

has been called a Quasi Fock MRCC (QF-MRCC) in the literature [8]. Our intention

is to develop a spin-free UGA version of a QF-MRCC, using the same strategy as
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has been used in our UGA-SUMRCC [7], for the direct computation of such energy

di↵erences as ionization potential (IP), electron a�nity (EA) and excitation energy

(EE). The performance of such a formulation also provides us some insights regarding

the physics incorporated in our excited state calculations using UGA-SUMRCC as

against that in the description of the ground state using SRCC.

We should mention here that, there exist several closely related theories viz. Va-

lence Universal MRCC (VUMRCC) [9, 10, 11], the so-called double-curly VUMRCC

[12, 13] which uses a special combinatoric cluster Ansätz and Similarity Transformed

Equation of Motion Coupled Cluster (STEOMCC) [14, 15, 16]. VUMRCC and the

double curly VUMRCC utilize a valence universal ⌦ while all the other methods in-

volve the calculation of ground state amplitudes which are used to transform the

Hamiltonian before the computation of the energy di↵erences. UGA-QFMRCC falls

in the second category. However, the Ansätz for UGA-QFMRCC is richer in structure

and we expect a better performance.

In the present formulation, our first assumption is that the ground state is well

described by a single reference theory, viz. the single-reference coupled cluster theory.

Therefore, the eT parametrization of the wave operator, acting on the HF function for

the ground state is su�cient. We will treat the excited states as multi-reference in a

state universal framework and for the analogous treatment of the common correlation

part the cluster amplitudes will include the exact ground state Ts for every model

function and the di↵erential correlation will be treated by the Sµ amplitudes. This

idea naturally suggests that our choice of Ansätz for UGA-QFMRCC should be of the

form:

⌦µ = eT{eSµ} (2.34)

We distinguish carefully between the operators Tµ used in UGA-SUMRCC and

Sµ introduced here in the context of UGA-QFMRCC. The Tµs in UGA-SUMRCC

represent the actual correlation of the target state contributed by the virtual exci-

tations from �µ. The Sµs, on the other hand, represent the di↵erential correlation

and relaxation of the state, ie. the di↵erence in the correlation contribution of Tµ of

the target state and the subduced state with respect to which the energy di↵erence is

required.

We explain below the theory for excitation energy, but the same considerations

apply also to any other energy di↵erence of interest. The ground state T-amplitudes

are first calculated for the closed shell reference state and so, the first part of our

Ansätz is known. The working equations to be derived are thus, for the Sµs of the

excited state only. As we have emphasized above, the hierarchical generation of the

Sµs going through the various lower valence sectors as in Valence Universal Multi-

reference Coupled Cluster (VUMRCC) [9, 10, 11] is entirely bypassed.
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Having solved for T, a dressed Hamiltonian is defined as:

eH = e�THeT (2.35)

eH and Heff are now partitioned to separate out the number part, which is the ground

state energy, Egr, and the operator parts H and Heff .

eH = Egr +H (2.36)

Heff = Egr +Heff (2.37)

Heff ⌫µ = h�⌫ |W ⌫µ|�µi (2.38)

W ⌫µ may be considered as the closed operator whose matrix element with respect to

h�⌫ | and |�µi corresponds to Heff ⌫µ. Its properties are similar to W⌫µ discussed in

the previous section.

Invoking the Bloch equation for the model function �µ,

H⌦µ|�µi =
X

⌫

⌦⌫ |�⌫iHeff ⌫µ (2.39)

HeT{eSµ}|�µi =
X

⌫

eT{eS⌫}|�⌫iHeff ⌫µ (2.40)

and operating with e�T from the left, we have

e�THeT{eSµ}|�µi =
X

⌫

{eS⌫}|�⌫iHeff ⌫µ (2.41)

eH{eSµ}|�µi =
X

⌫

{eS⌫}|�⌫iHeff ⌫µ (2.42)

{eSµH̃eSµ}|�µi =
X

⌫

{eS⌫}|�⌫iHeff ⌫µ (2.43)

Using the definitions in Eqs. 2.36 to 2.38 we can cancel Egr from either side of

Eq. 2.43 to give:

{eSµHeSµ}|�µi =
X

⌫

{eS⌫eS⌫W ⌫µ}|�µi (2.44)

{eSµHeSµ}|�µi =
X

⌫

{eSµe�S
µeS⌫eS⌫W ⌫µ}|�µi (2.45)



Theoretical Developments 53

Eq. 2.45 is satisfied if the following equality is invoked:

{HeSµ}|�µi =
X

⌫

{eS⌫

�S
µeS⌫W ⌫µ}|�⌫i (2.46)

h�l| {H}|�µi �
X

⌫

h�l|{eS⌫

�S
µeS⌫W ⌫µ}|�⌫i = 0 (2.47)

Alternatively, we could use Wick’s theorem in reverse successively and introduce e✓

as in Eq. 2.19 and then use an approximation for e✓ just like in UGA-SUMRCC (see

Sec. 2.1.1).

After having solved for the amplitudes of {Sµ}, we obtain the sought after energy

di↵erences, �Ek and the associated coe�cients, {cµk} from the eigenvalue equation:

X

⌫

Heffµ⌫c⌫k ⌘
X

⌫

h�µ|W µ⌫ |�⌫ic⌫k = �Ekcµk (2.48)

2.1.3 Necessary Modifications for the Use of an Incomplete Model Space

(IMS) in the Theories for Excited State Energies and Energy Dif-

ferences

The essential di�culty of maintaining size extensivity in an incomplete model space

is that it is not enough to have an Heff which is connected, since the eigenvalues ob-

tained on eventual diagonalization of even a connected Heff in an IMS would lead to

disconnected terms and hence size inextensive energies. The situation is entirely anal-

ogous to the diagonalization of a CI matrix in a truncated space where each element

of the CI matrix is connected due to the connectedness of H but the diagonalization

leads to size inextensive energies. Mukherjee analyzed this issue [17, 18, 19, 20] and

concluded that the operator Heff to be diagonalized in the IMS not only should be

connected but also should be closed in a very special sense. For an IMS, a closed

operator should be chosen as one which by construction can never lead to excitation

outside the IMS by its action on any �µ. Given size-extensive Tµs, the simplest choice

for getting a size-extensive Heff is not to impose the IN: but allow the closed part of

{eTµ} to have the value it should have if Bloch equations are solved without imposing

IN [21, 19]. A connected formulation of Heff in an IMS was achieved first in the

Fock space MRCC [17, 22, 21, 8], while the corresponding SUMRCC formulation was

proposed a few years later [8, 23, 24].

In the most general situation, it is conceivable that an operator labeled by active

lines only can lead to a transition from a �µ to a �⌫ but it would not be closed if there

is at least one function �� for which the same operator leads to excitation outside the

IMS. They are called quasi-open (q-op) operators [21] and since all operators of Heff

are labeled by active lines only, one should impose the constraint that the quasi-open
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components of Heff are zero by construction to ensure that Heff is closed. This is

achieved via the inclusion of quasi-open operators in the set Tµ8�µ and this ensures

that the matrix of Heff in the IMS would generally have zero entries connecting

the pair (µ, ⌫) if the corresponding excitation is a quasi-open operator. It is to be

emphasized here that once an operator is identified as quasi-open, it should be included

in the set Tµ for every �µ even if its action on that �µ would lead to another model

function �⌫ . Of course, one should delete those quasi-open operators in Tµ whose

action on �µ is trivially zero because of Pauli principle. We can thus define two types

of Tµs, “open” ([Tµ]op) and “quasi-open” ([Tµ]q�op). The open operators have at least

one inactive label, while the quasi-open operators are labeled by active indices only.

We should mention that a very comprehensive book-keeping procedure of classifying

the various Fock-space operators, where this concept of quasi-open (q-op) and closed

is defined by alternative symbols was suggested by Kutzelnigg et al. [18, 25] which

provides additional insight into the aspects of connectivity.

For example, in the special case of h-p model spaces, the quasi-open and the closed

operators are clearly of di↵erent types: any quasi-open operator must involve changes

in occupancies of holes and particles and hence, transfer of electrons between active

holes and active particles while the closed operators would scatter a h-p function to an-

other h-p function of the h-p model space.These have been termed as ’quasi-complete’

by Lindgren [5] For theories involving the h-p IMS having the same symmetry as that

of the ground state, a h-p de-excitation operator acting on a �µ would lead to the

Hartree-Fock (HF) function, �0 which is outside the model space, thus these operators

are quasi-open. Also, the h-p excitation operators lead from the model space to 2h-2p

virtual functions and these are quasi-open too. Thus in the {eTµ} there could be a

quadratic power ({1
2T

2
µ}) where there could be a closed component of the quadratic

term arising from the situation where one of the Tµs is a de-excitation and the other

is an excitation. Hence, the IN is not satisfied because the powers of quasi-open

operators might be closed and we have the relation: {eTµ}cl = {eTµq�op}cl.

To obtain equations for the quasi-open components of Tµ, we have to project Gµ

defined in Eq. 2.26 onto those functions which are reachable by the action of quasi-

open operators acting on �µ. They may, depending on the type of excitation and

the �µ, either belong to the IMS itself or to the ’complementary active space’. The

union of the model space and the complementary active space is the complete active

space. Defining all such functions reachable by the action of quasi-open operators on

�µ as {�̄�
µ} we would have the corresponding equations for determining the quasi-open

operators of Tµ by projecting on to h�̄�
µ|. The corresponding residuals for the open

and quasi-open T-operators would thus be defined as:

Rlµ = h�l
µ|[Gµ]op|�µi (2.49)
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and,

R�̄µ = h�̄�
µ|[Gµ]q�op|�µi. (2.50)

Eqs. 2.49 and 2.50 are used to determine [Tµ]op and [Tµ]q�op respectively by the

usual updating procedure for the open and the quasi-open amplitudes of Tµ. However,

they require the knowledge of W⌫µ. This must be obtained from the equation for Heff .

This is where the theories for IMS di↵er from those for CAS. In the latter case, Heff

is simply the closed part of Hµ which can be diagonalized to get the state energies.

For IMS-based theories, the Heff is obtained iteratively through the solution of its

own equation, just like the T-amplitudes.

We may use su�ciency equations for solving for the amplitudes of T. However,

no such freedom is available for the closed component, viz. Eq. 2.28, although a

reasonable approximation for e✓ which we have taken as one may be deemed accept-

able. Since a product of quasi-open operators may be closed, we summarize the rules

governing the products of operators in an IMS before defining the Heff :

cl ⇥ cl = cl

cl ⇥ q � op = q � op

cl ⇥ op = op

q � op⇥ q � op = cl or q � op

q � op⇥ op = op

op⇥ op = op (2.51)

Keeping these rules in mind, we may equate R�µ of Eq. 2.28 to zero to define the

Heff in an IMS as in a CMS (Eq. 2.33). For defining the W⌫µ, we now have to make

explicit use of the fact that there is a closed component of {eTµ}: {eTµ}cl. We can

have a recursive definition for W⌫µ from Eq. 2.28. W i+1
�µ is the updated value of the

operator W�µ at the i+1th iteration of the cluster amplitudes. We may initiate the

iteration with W 0
�µ:

W 0
�µ|�µi = |��ih��|{Hµ}cl|�µi (2.52)

and continue with,

W i+1
�µ |�µi = {Gµ}i�µ|�µi+W i

�µ|�µi (2.53)

A special feature of the theory for IMS is that now the coupling term can also

contribute to the closed projection. For situations where IN holds good there is

no need to update W recursively using Eq. 2.53 but we have instead W�µ|�µi =

|��ih��|{H̄µ}|�µi. A detailed discussion of this procedure is presented in Sec. 5.2.3.

Of course, we need to update {H̄µ} after the updating of Tµs. By the same arguments
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as is adduced in Sec. 2.3 to prove the connectivity of Eq. 2.25, one can infer the

connectivities of the Eqs. 2.49 and 2.50 as elaborated later in Sec. 2.3. When IN is

abandoned, implicit iteration of W⌫µ along with the iteration for T-amplitudes leads

to convergence of W⌫µ and hence, equivalently Heff .

Sinha et al. [26] have shown quite some time ago that, in the context of VUMRCC

theory for IMS, if only the computation of excitation energy is our target then it is

possible, operationally speaking, to ignore the de-excitation quasi-open operators in

{Tµ} since the equations for such de-excitation amplitudes are completely decoupled

from those of the excitation amplitudes in the sense that in the equations for excitation

amplitudes there are no terms containing the de-excitation cluster operators. In e↵ect,

this implies that Heff for the h-p IMS does not involve the de-excitation operators

at all and we may simply diagonalize Heff in this model space to get excitation

energies/excited state energies, depending on the formulation, without the knowledge

of the de-excitation cluster amplitudes. Applications of the VUMRCC in this setting

have been studied by others as well [27, 28, 29]. However, the analysis of Sinha et

al. for the h-p IMS in VUMRCC is not valid for the SUMRCC. For UGA-SUMRCC

or UGA-QFMRCC, the equations for the excitation and de-excitation operators, EA
I

and EI
A are coupled and products of EA

I and EI
A for the model function, �A

I , can

contribute to the energy via the coupling term in the working equations. Thus, we

have proceeded by abandoning IN.

We have also explored the choice of the IMS as comprising of the HF function, �0

and a set of h-p excited functions �µ. Such kind of model spaces were first introduced

and studied by Kutzelnigg et al. [18, 25] who termed them as ‘isolated incomplete

model spaces’ (IIMS). The IIMS has the interesting property that all quasi-open

operators are of excitation type. The de-excitation operators for the h-p model space

inducing transitions to the HF ground state function, �0, in either UGA-SUMRCC

or UGA-QFMRCC, do not appear in {Tµ} since this now becomes a closed rather

than a quasi-open operator. Thus, for such IIMS, the powers of Tµ which are closed

do not then appear at all and the customary IN holds good. We shall study all the

three methods, vis. UGA-SUMRCC, UGA-QFMRCC and UGA-IIMS-SUMRCC in

the context of core excitation energies.

2.2 The Working Equations in the CCSD Truncation Scheme

We begin with the comment that, in the parent spinorbital-based SUMRCC method

using the JM Ansätz in a spinorbital basis, the set of excited functions, {�l
µ}, reached

by the action of Tµs on the various model functions �µ, are complete in the sense that

for each of the N active model functions, �µ, if Mµ is the number of virtual functions
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reached from �µ, then the total number of cluster amplitudes is M =
X

µ

Mµ. The

corresponding dimension of the Hilbert space spanned by the virtual functions for all

the N roots is equal to Mvirt =
X

l
µ

,k

Nl
µ

k. Since Nl
µ

= Mµ, and sum over k is exactly

equal to sum over µ, Mvirt = M , and we have no redundancy in the SUMRCC theory.

Moreover, in a spinorbital formulation, the virtual determinant, �l
µ, reached from

a model determinant, �µ, is uniquely specified by the indices of the occupied and

unoccupied spinorbitals in �µ.

In a spin-free UGA-SUMRCC, one would naturally want to retain the spirit of the

spinorbital based SUMRCC but there are two hurdles. Firstly, using a singles and

doubles (SD) truncation scheme, not all the virtual functions �l
µ generated by single

and double orbital substitutions are reachable using one and two body generators of

the unitary group accompanying the cluster amplitudes in Tµ in the general situation

with arbitrary valence occupancy in the �µs. Secondly, an overcompleteness can

arise within the excitation manifold for one model function, �µ with more than one

Tµ/Sµ leading to the same excited function as the components of Tµ, unlike in the

spinorbital-based formulation are not all linearly independent by construction.

We choose to ignore the first hurdle and restrict ourselves to one and two-body

operators in Tµ/Sµ to reduce the computational cost and the argument that the use

of projection equations involves some three-body composites which partially compen-

sates for this loss of correlation in a somewhat twisted implicit sense.

The second issue poses a serious problem as it is also related to the stability of the

solution of the working equations. Since, operators defined in terms of spatial orbitals

do not have a one to one correspondence with pairs (�l
µ,�µ), a proper choice of linearly

independent operators becomes important. An excited function is characterized by

the occupancies of the orbitals and the spin coupling among the singly occupied

orbitals. Given the number of open shells (singly occupied orbitals) and the net

spin of the state, the number of linearly independent (LIN) functions are known and

only as many equations are logically available as there are LIN functions. It is thus

theoretically appropriate to choose suitable linearly independent combinations of the

various excitation operators of Tµ/Sµ inducing the same orbital occupancy changes in

the set {�l
µ}.

Li and Paldus have encountered this problem in several UGA-based approaches in

the context of SUMRCC [4, 1, 30]. They have attempted two strategies: one in which

Gel’fand-Tsetlin (GT) excited states were generated [30, 31] and another in which

they exploited the SU2 group adaptation of the generators to form their excitation

operators [1]. The generators of Gel’fand states are combined to form the linearly

independent operators of an SU2 group in the latter case. These operators will not

necessarily follow the one-to-one orthogonality relation of the corresponding Gel’fand
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adapted excited states of an U(nc + na + nv) group where nc denotes the number of

inactive core orbitals, na denotes the number of active (equivalently, valence) orbitals

and nv denotes the number of inactive virtual orbitals, and they argued that to retain

size extensivity, the states must obey this orthogonality relationship. Hence they

advocated the use of an orthonormal SU2 adapted manifold of excitation operators.

In our opinion, there are three ways of choosing the cluster operators in such a

situation to overcome this hurdle of overcompleteness of the excitation manifold: (a)

to use suitable combinations of generators of the unitary group to define the linearly

independent combination of excitation operators, (b) to continue to use the simple gen-

erators of the unitary group and in case their number exceeds the number of linearly

independent excitations, provide extra working equations for the redundant operators

by invoking su�ciency conditions and, (c) to use amplitude equations. Approach (b)

is entirely conceivable and natural for UGA-SSMRCC, since one is obliged to invoke

su�ciency conditions anyway. Such a strategy was indeed adopted by Maitra et.al

[32] in their UGA-SSMRCC and a related theory where the inactive double excita-

tions were treated in an internally contracted manner (UGA-ICID-SSMRCC) [33]. In

the realm of UGA-SUMRCC such su�ciency conditions do not appear but it is not

mandatory to disallow redundancy such as has been employed in the UGA-SSMRCC.

The use of redundant cluster operators may lead to simpler working equations whose

e�cacy needs to be looked into. In our UGA-SUMRCC and UGA-QFMRCC for-

mulation [7, 34] we have explored both strategies (a) and (b) to study their relative

performance. In Sec. 2.2.1 we discuss how we can use simple perturbative arguments

to choose the LIN combinations of T-operators for approach (a) and in Sec. 2.2.2 we

discuss how suitable su�ciency conditions may be chosen for approach (b). The third

possibility, (c), is to abandon the projection equations altogether and solve the ampli-

tude equations. The question of linear dependencies does not arise in this case. The

equations are then also easily extendible to arbitrary valence sectors. In this sense,

this possibility is - theoretically speaking - superior to the second option of using suf-

ficiency conditions. On the flip side, amplitude equations involve less terms than the

corresponding projection equations and some compromise in terms of accuracy has to

be made. We discuss the details of this approach in Sec. 2.2.3.

2.2.1 Projection Equations: Scheme P

This is the most rigorous and elaborate scheme we will apply where all G blocks

up to three body with direct and exchange spectator scatterings are included in the

projection equations. The equations for the 1h-1p valence sector may involve three and

four body blocks. We have ignored the four body blocks since, they arise from non-

linear coupled cluster terms and are found to have very small contributions. In this

scheme the excitation manifold is taken to be linearly independent and appropriate
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combinations are chosen by the method delineated below.

Use of Non-redundant Excitation Manifold

In the present formalism we have generated the working equations by projecting the

set of Bloch equations to the excited state CSFs, �l
µ. We want our operators to be

LIN although not necessarily orthogonal. We propose to choose our combinations

of operators in a practicable manner within the framework of our theory, using a

two-pronged approach: a perturbative analysis of our working equations and the

knowledge of the number of LIN functions. Whether these operators produce mutually

orthogonal virtual functions, is something we do not consider at all. We illustrate our

scheme using an example.

We will henceforth denote by labels i, j, ..., etc. the inactive holes, by a, b, ..., etc.

the inactive particles, by I, J, ..., etc. the active holes and by A, B, ...,etc. the active

particles. Excitations involving an orbital, ’i’, and an orbital, ’a’, can belong to two

classes: (i) not involving a change in occupancy of the active hole (I) or particle (A)

orbitals or (ii) involving a change in occupancy of the active hole or particle orbitals.

tai , t
Ia
iI and tAa

iA belong to the first class. It is enough if we explain our strategy using

the Ts belonging to this class. For those belonging to the second class, like tAa
ij or tabIA,

etc., an exactly analogous analysis can be used.

To discern which of the excitation operators accompanying the amplitudes, tai , t
Ia
iI

and tAa
iA are linearly independent we first look carefully at the algebraic structures of

their working equations: viz. Eqs. 2.54, 2.55 and 2.56:

Ga
i �GaI

iI ⌘
I
I +GaA

iA �
A
A � 1

2
GIa

iI ⌘
I
I �

1

2
GAa

iA �
A
A +GaIA

iIA �IA
IA � 1

2
GAaI

iAI �IA
IA

�1

2
GIaA

iIA �IA
IA +GaAI

iIA �AI
IA � 1

2
GAaI

iIA �AI
IA � 1

2
GIaA

iAI �AI
IA = 0 (2.54)

Ga
i ⌘

I
I �GaI

iI ⌘
I
I �GaA

iA �IA
IA + 2GIa

iI ⌘
I
I �GAa

iA �IA
AI +GaIA

iIA �IA
IA +GAIa

iIA �AI
IA

�2GIaA
iIA �IA

IA +GaAI
iIA �AI

IA � 2GaAI
IiA �AI

IA +GIaA
iAI �IA

IA = 0 (2.55)

�Ga
i �

A
A �GaI

iI �IA
IA �GaA

iA �
A
A �GIa

iI �IA
AI + 2GAa

iA �
A
A �GaIA

iIA �IA
IA + 2GAIa

iIA �IA
IA

�GIaA
iIA �AI

IA �GaAI
iIA �AI

IA + 2GaAI
IiA �AI

IA +GIaA
iAI �IA

IA = 0 (2.56)

The values of the RDMs featuring in this equation have the following values for the

h-p case.

�AA = h�µ|{EA
A}|�µi = 1

⌘II = 2� h�µ|{EI
I }|�µi = 2� �II = 1 (2.57)

�IA
IA = h�µ|{EIA

IA}|�µi = �1

�AI
IA = h�µ|{EAI

IA}|�µi = 1 + (�1)S (2.58)
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where S is the spin of the CSF, �µ (ie. S=0 for singlet and S=1 for triplet). The

symbols � and ⌘ refer to particle and hole densities respectively. To obtain the LIN

combinations of operators it is su�cient to consider up to two-body G-blocks.

For the singlet excited states, using the values of the RDMs as in Eq. 2.57 , we

arrive at the following equations:

Ga
i �GaI

iI +GaA
iA +

1

2
GIa

iI � 1

2
GAa

iA = 0 (2.59)

Ga
i �GaI

iI +GaA
iA + 2GIa

iI � 2GAa
iA = 0 (2.60)

Ga
i �GaI

iI +GaA
iA + 2GIa

iI � 2GAa
iA = 0 (2.61)

Similarly, the equations for triplet states are:

Ga
i �GaI

iI +GaA
iA +

1

2
GIa

iI � 1

2
GAa

iA = 0 (2.62)

Ga
i �GaI

iI +GaA
iA + 2GIa

iI = 0 (2.63)

Ga
i �GaI

iI +GaA
iA � 2GAa

iA = 0 (2.64)

We note here that Eqs. 2.60 and 2.61 are identical. Thus, tIaiI and tAa
iA are linearly

dependent operators. After a slight mathematical manipulation, the set of equations,

Eqs. 2.59-2.61, can be equivalently written as:

Ga
i �GaI

iI +GaA
iA = 0 (2.65)

GIa
iI �GAa

iA = 0 (2.66)

The first order perturbative estimate of the cluster amplitude tai from Eq. 2.65 is

given by

1ta
(1)

i ⇡ (fa
i � V aI

iI + V aA
iA ){Ea

i }
f i
i � V iI

iI + V iA
iA � fa

a + V aI
aI � V aA

aA

= 1ta
(1)

i {Ea
i }. (2.67)

Similarly, Eq. 2.66 indicates that

2ta
(1)

i ⇡ (V Ia
iI � V Aa

iA )

f i
i � V iI

iI + V iA
iA � fa

a + V aI
aI � V aA

aA

(2.68)

The quantities f p
p , (p = i or a), are orbital energies and V pq

rs are the two-body matrix

elements of the Coulomb repulsion operator. Thus, the corresponding operators,

{EIa
iI } and {EAa

iA } should be treated on the same footing in a combination as guided

by the first order estimate. We should therefore introduce 2T a
i ⌘2 tai [{EIa

iI }� {EAa
iA }]

with a common amplitude 2tai as the unknown and use Eq. 2.66 for its determination.

Thus the first class of operators contains:1tai {Ea
i } and 2T a

i =2 tai [{EAa
iA }� {EIa

iI }].
Similarly the second class of operators contains: 1T̃ a

i =1 t̃ai [{EaA
iI } � 0.5{EAa

iI }] and
2T̃ a

i =2 t̃ai [{EaI
iA}�0.5{EIa

iA}]. The triplet equations, on the other hand, do not indicate
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Table 2.1: Choices of Ts for Singlet 1h-1p States

UGA-SUMRCC OSCC (Paldus and Li) [4]
T I
i tIi {EI

i } tIi {EI
i }

TA
i tAi {EA

i } tAi {EA
i }

T a
I taI{Ea

I } taI{Ea
I }

T a
A taA{Ea

A} taA{Ea
A}

1T a
i

1tai {Ea
i } 1p

2

1
tai {Ea

i }
2T a

i
2tai [{EAa

iA }� {EIa
iI }] 1p

2

2
tai [{EIa

iI }� {EAa
iA }� {Ea

i }]
T ••
ij t••ij [{EIA

ij }+ {EAI
ij }] 1p

2
t••ij [{EIA

ij }+ {EAI
ij }]

T ab
•• tab••[{Eab

IA}+ {Eab
AI}] 1p

2
tab••[{Eab

IA}+ {Eab
AI}]

T̃ a
i

1t̃ai [{EaA
iI }� 0.5{EAa

iI }] 1t̃ai [{EaA
iI }+ {EAa

iI }]
2t̃ai [{EaI

iA}� 0.5{EIa
iA}] 2t̃ai [{EaI

iA}+ {EIa
iA}]

T aa
ii taaii {Eaa

ii } 1
2t

aa
ii {Eaa

ii }
T ab
ii tabii {Eab

ii } 1p
2
tabii {Eab

ii }
T aa
ij taaij {Eaa

ij } 1p
2
taaij {Eaa

ij }
T ab
ij tabij {Eab

ij } 1
2

1
tabij [{Eab

ij }+ {Eba
ij }]

tbaij {Eba
ij } 1

2
p
3

2
tabij [{Eab

ij }� {Eba
ij }]

any linear dependence and hence, all three operators, tai , t
Ia
iI and tAa

iA can be used.

A comparative list of the operators used by us against those chosen by Li and

Paldus [4] are provided in Table 2.1 and Table 2.2 wherein the operators chosen by Li

and Paldus [4] have been converted to normal order with respect to the HF function

for an easy comparison with our manifold of operators.

The perturbative analysis is workable in a straightforward manner only up to two

body operators. In the case of a two active electron situation, we know that the excited

functions must be either symmetric (triplet) or anti-symmetric (singlet) depending on

whether the model function is triplet or singlet respectively. This consideration allows

us to construct combinations of operators. Beyond two body operators, for more

than two active electrons, taking explicit combination of operators becomes rather

cumbersome and di�cult in any scheme but doable in principle via the combination

of generators of the unitary group adapted to SU2, for instance, with or without

orthogonality.

2.2.2 Deliberate Use of Su�ciency Conditions: Scheme S

In the previous subsection, we have seen that suitable combinations of operators

need to be chosen to ensure a linearly independent excitation manifold. This would

become increasingly complicated as we proceed to higher valence sectors. There is a

possibility that inflating the number of equations by invoking su�ciency conditions
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Table 2.2: Choices of Ts for Triplet 1h-1p States

UGA-SUMRCC OSCC (Paldus and Li) [4]
T I
i tIi {EI

i } tIi {EI
i }

TA
i tAi {EA

i } tAi {EA
i }

T a
I taI{Ea

I } taI{Ea
I }

T a
A taA{Ea

A} taA{Ea
A}

T a
i tai {Ea

i } 1p
2

1
tai {Ea

i }
T Ia
iI tIaiI {EIa

iI } 1p
2

2
tai [{EIa

iI }� {EAa
iA }� {Ea

i }]
TAa
iA tAa

iA {EAa
iA } 1

2

3
tai [{EIa

iI }+ {EAa
iA }]

T ••
ij t••ij [{EIA

ij }� {EAI
ij }] 1

2t
••
ij [{EIA

ij }� {EAI
ij }]

T ab
•• tab••[{Eab

IA}� {Eab
AI}] 1

2t
ab
••[{Eab

IA}� {Eab
AI}]

TAa
iI tAa

iI {EAa
iI } tAa

iI {EAa
iI }

T aI
ij taIij {EaI

ij } 1p
2(1+�

ij

)

1
taIij [{EaI

ij }+ {EaI
ji }]

T aI
ji taIji {EaI

ji } 1p
6

2
taIij [{EaI

ji }� {EaI
ij }]

T aA
ij taAij {EaA

ij } 1p
2(1+�

ij

)

1
taAij [{EaA

ij }+ {EaA
ji }]

T aA
ji taAji {EaA

ji } 1p
6

2
taAij [{EaA

ji }� {EaA
ij }]

T ab
iI tabiI {Eab

iI } 1p
2(1+�

ab

)

1
tabiI [{Eab

iI }+ {Eba
iI }]

T ba
iI tbaiI {Eba

iI } 1p
6

2
tbaiI [{Eba

iI }� {Eba
iI }]

T ab
iA tabiA{Eab

iA} 1p
2(1+�

ab

)

1
tabiA[{Eab

iA}+ {Eba
iA}]

T ba
iA tbaiA{Eba

iA} 1p
6

2
tbaiA[{Eba

iA}� {Eba
iA}]

T aa
ii taaii {Eaa

ii } 1
2t

aa
ii {Eaa

ii }
T ab
ii tabii {Eab

ii } 1p
2
tabii {Eab

ii }
T aa
ij taaij {Eaa

ij } 1p
2
taaij {Eaa

ij }
T ab
ij tabij {Eab

ij } 1
2

1
tabij [{Eab

ij }+ {Eba
ij }]

T ba
ij tbaij {Eba

ij } 1
2
p
3

2
tabij [{Eab

ij }� {Eba
ij }]
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would allow us to use all possible generators of the unitary group (E) without having to

bother about what combination to use. We explore this possibility for a 1h-1p sector

using both UGA-SUMRCC and UGA-QFMRCC. The true benefit of this scheme is,

however, expected to be in the extension of these theories to higher valence sectors

and higher body T operators. In the context of the example mentioned in Sec. 2.2.1,

this would mean using the following set of equations.

Ga
i �GaI

iI +GaA
iA �GaIA

iIA + 2GaAI
iIA �GIaA

iAI = 0 (2.69)

GIa
iI +GIaA

iIA �GaAI
IiA = 0 (2.70)

GAa
iA �GAIa

iIA +GaAI
IiA = 0 (2.71)

Similarly, the equations for the other dependent operators may be separated out.

However, this separation is sometimes ambiguous leading to the possibility of arbitrary

equations. The excitation manifold here is over-complete with the same function

generated more than once. Unlike the orthogonal space of Gel’fand adapted excited

functions, our manifold in the Scheme P of the UGA-SUMRCC is chosen to be linearly

independent but is not orthogonal. On invoking su�ciency, the dependent operators

can be treated as independent. This might destroy the relative contribution of these

amplitudes rendering the equations unstable, inaccurate or both. The performance of

this approximation with artificial inflation of unknowns and equations has thus to be

carefully assessed to test its e�cacy. The results are presented in Sec. 2.4. A further

approximation leads to Scheme S0 wherein only the G-blocks which are proportional

feature. We must indicate here that GaAI
iIA is not proportional to Ga

i although the

operator {EaAI
iIA } is factorizable into {Ea

i }{EAI
IA} as {EAI

IA} is not a number operator

for the CSF, �µ.

2.2.3 The Amplitude Equations: Scheme A

While a set of su�ciency equations may be deduced from the parent projection equa-

tions, an equally feasible approach is to use operator equations or, as they are com-

monly called, amplitude equations. This approach does not require any consideration

of linear dependence as the equations do not correspond to the action of operators

on any function space. As in Scheme S0, only the G-blocks which are proportional

to each other appear in the same equation. For example, for a 1h-1p,(I,A), model

function GaIb
ijI occurs in the equation for T ab

ij which involves an exchange spectator

scattering in j ! b. An exchange spectator scattering can result in a spin flip along

with a double excitation. The operators of these G-blocks excite to functions not

spanned by the manifold of our T-operators. Moreover, those G blocks which are not

proportional to the lower body one or two-body operators appear at higher orders of



64 Chapter 2

perturbation. These are not present in the amplitude equations of Scheme A, thereby

yielding simpler equations and facilitating the reduction of computational cost as well.

2.2.4 Equivalence of Projection and Amplitude Equations

For our UGA-SUMRCC, the presence of the RDMs in the working equations means

that the set of working equations for Scheme P have the structure:

Rl
µ =

X

l0

h�µ|El
µ
†Ēl0

µ |�µi g = Dg = 0 (2.72)

where ‘g’ is the amplitude of the G-block, G, and D is the overlap matrix between

the cluster operators and the operators associated with the G-blocks. It is important

to note that the excited functions denoted by the superscripts, l and l’, have exactly

the same orbital occupancies but may di↵er in the spin-coupling schemes. By the

property of orthogonality of Gel’fand states, such overlap elements will be zero. It is

also important to note that for the choice of G-blocks in Scheme P, D is a rectangular

matrix as three and higher body G-blocks which are not proportional to any cluster

operator in our CCSD truncation scheme occur in the projection equations. D is thus

not invertible. However, if we discard such G-blocks and only allow projections of

the LIN cluster operators, D will turn out to be a square, non-singular and hence,

invertible matrix leading to:

glµ = 0 8 l. (2.73)

This is, of course, the structure of the amplitude equations of Scheme A.

Hence, we can summarize that Scheme P is a rigorous scheme of projection equa-

tions with the highest inclusion of physics while Scheme A, a perfectly valid approach

involving amplitude equations may be shown to be equivalent to a simplified pro-

jection scheme with comparatively less physics. The su�ciency equations of Scheme

S and their simplified versions in Scheme S0 are somewhat arbitrary and may show

erratic behavior. Scheme S0 turns out to be very close to using amplitude equations

although the theoretical premise of operator equations vis a vis projection equations

is considerably di↵erent. In fact, the explicit equations for 1h, 1p and 1h-1p triplet

states are exactly the same for Schemes S0 and A.

2.3 Size Extensivity of the Parent UGA-SUMRCC and Eval-

uation of Size Intensive Energy Di↵erences in UGA-

QFMRCC

In this section we discuss the aspects of size-extensivity of UGA-SUMRCC and further

elaborate on how the extensivity of the cluster amplitudes may be inferred in spite of
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the occurrence of inextensive quantities, ie. the RDMs, in the working equations. To

aid in the development of our arguments, we concisely rewrite Eq. 2.25 as:

X

n

h�l
µ|Gl(n)

µ |�µi = 0 (2.74)

where,

Gl(n)
µ = {Hµ}(n) �

X

⌫

{eT⌫

�T
µeT⌫W⌫µ}(n). (2.75)

‘n’ denotes the rank of the operator. There are two levels of connectivity to be an-

alyzed. First, we must demonstrate that the Gl(n)
µ blocks themselves are connected

composites. Next, we must be able to show that the di↵erent components of the work-

ing equations obtained on projection by h�l
µ| do not lead to disconnected pieces in the

Heff which would lead to the energies being size-inextensive. Since RDMs are not, in

general, connected quantities, we must conclusively show that all of the terms in the

matrix element h�l
µ|G

l(n)
µ |�µi, with the potential of being disconnected, either neces-

sarily have common labels with the G-blocks or cancel on algebraic manipulation. In

essence one needs to show that the terms contributing to each projection equation are

connected entities. Subsequently, one must establish that at the asymptotic separa-

tion of the molecule into fragments, say, A and B, Tµs labeled by orbitals on both A

and B are necessarily zero, in order to conclusively prove the additive separability of

the energy.

It is possible to demonstrate the connectedness of the working equations by a

cumulant decomposition of the RDMs featuring in our working equations followed

by a substitution of the equations for lower rank cluster operators in the equations

for higher rank operators in order to remove disconnected entities but this does not

help us in easily demonstrating the extensivity of the theory. The demonstration of

connectedness of the equations is presented in Appendix E. In this thesis, we restrict

ourselves to the 1h, 1p and 1h-1p spaces and present a proof of extensivity for these

specific situations only.

2.3.1 Connectivity of the Gµ Blocks

To start with, we assume that the cluster amplitudes are connected and analyze the

connectivity of the G-blocks. The G-blocks are composed of two types of terms, the

so-called “direct term” and the “coupling term”. The composite quantity, H̄µ, is an

explicitly connected quantity if the Tµs are connected. Hence, the direct terms are

connected. For the coupling term, we have to analyze several di↵erent aspects of the

connectivity:
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1) Connectivity of eT⌫W⌫µ: W⌫µ consists of those closed components of H̄µ which

excites �µ to �⌫ and being a part of H̄µ is explicitly connected. For connected T⌫ s,

eT⌫W⌫µ is explicitly connected. In what follows we will henceforth denote eT⌫W⌫µ as

⇣⌫µ
2) Connectivity of {eT⌫

�T
µ⇣⌫µ}: We consider two possible cases here; the case where

�⌫ and �µ di↵er by at least one orbital (Case 2a) and the case where �µ and �⌫ have

the same orbital occupancy and either �µ = �⌫ or they di↵er in the spin coupling

scheme of the active orbitals (Case 2b).

For Case 2a, the quantity ⇣⌫µ is explicitly dependent on all the active orbitals

by which �µ and �⌫ di↵er since ⇣⌫µ contains W⌫µ. Since all the CSFs in the model

spaces are treated on the same footing, the functional dependence of every cluster

amplitude on the active orbital labels remains the same. Hence, the di↵erence of the

amplitudes tµ � t⌫ inducing the same excitation depends implicitly on one or more

of the active orbitals by which �µ and �⌫ di↵er. Hence the composite {eT⌫

�T
µ⇣⌫µ}

have at least one common active orbital label shared by the two factors and hence,

the composite is connected. We also note here that our analysis subsumes the case

where some components of T⌫ are zero in the coupling term in Eq. 2.25 because

of the occupancy restrictions of some active orbitals. Clearly, the corresponding Tµ

involving the same label of active orbitals in creation and destruction must involve

those orbitals by which �µ and �⌫ di↵er.

For Case 2b, if �µ and �⌫ are the same, the composite in the coupling term reduces

simply to ⇣⌫µ which is obviously connected. If �µ and �⌫ have the same orbital

occupancy but di↵er in their spin coupling schemes, then the quantity ⇣⌫µ would

depend on one or more of the same orbitals involved in the di↵erent spin couplings

for �µ and �⌫ . In such a situation, the di↵erence tµ� t⌫ will have implicit dependence

on all active orbitals involved in the segments in which the spin couplings of �µ and

�⌫ are di↵erent, and hence the product {eT⌫

�T
µ⇣⌫µ} is a connected term.

2.3.2 Extensivity of the Cluster Amplitudes

In order to establish the size-extensivity of the UGA-SUMRCC theory, the require-

ment is that energy of the system, AB, with sub-systems A and B at infinite separa-

tion, should not have any contribution from the TABs which are Tµs bearing orbital

labels belonging to both sub-systems A and B. Usually (for example, for spinorbital-

based SUMRCC or SSMRCC), the more stringent condition of TAB = 0 is satisfied.

If one considers the basic projection equations, for example, as in Eqs. 2.59-2.61,

it would appear that disconnected components are present, viz. Ga
i and GaA

iA in Eq.

2.60 contributing to RIa
iI and Ga

i and GIa
iI in Eq. 2.61 contributing to RAa

iA . However,

once the coupled equations are decoupled by simple algebraic manipulation as shown
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in Sec. 2.2.1, not only can we identify the LIN combinations of operators but also

understand the extensivity of the cluster operators. The decoupled equations as shown

in Eq. 2.65 and Eq. 2.66, for instance, indicate that no disconnected terms involving

lower rank G-blocks occur at all. Thus, at the asymptotic limit of infinite separation

of fragments (say, A and B), the TABs at the initial perturbative level are zero owing

to the additive separability of the Hamiltonian, H = HA +HB;HAB = 0. Stemming

from the connectivity of the G-blocks, as established in Sec. 2.3.1, and the extensivity

of the Hamiltonian, a G-block of the AB type cannot be constructed from pure TAs

and/or TBs. Thus, no RAB is ever generated and the TABs remain zero throughout

the iterative procedure. Specifically for the example we are discussing, if i,a and I are

on fragment A and orbital A is on fragment B, the t-amplitude associated with the

operator EIa
iI � EAa

iA is still entirely on fragment A as Hamiltonian contractions with

EAa
iA will be zero.

A similar analysis can establish the size-extensivity of the state energies, Egr+�E,

�E being computed using the UGA-QFMRCC theory. Since, Egr is the CCSD energy

for the closed shell ground state and is thus extensive, the intensivity of �E is proved.

2.4 Molecular Applications

Our goal in this section is twofold: to study the accuracy of the UGA-SUMRCC and

UGA-QFMRCC theories proposed by us against other comparable theories for ionized

and excited state energies and to explore the inherent performance of the theories in

view of the flexibility a↵orded to us by the choice of projection versus su�ciency

equations or projection versus amplitude equations and the set of G-blocks to be

considered.

Our theories are expected to be more accurate than EOM-CCSD as a result of

the greater richness of physics of our wave operator ⌦ on two counts. First, the Rk

operators in EOM-CC (as in Eq. F.8) truncate at the linear term as in the linear

response theories resulting in an incomplete description of the Thouless-like orbital

relaxation. Our method allows a much higher degree of clustering. Our results cor-

roborate this expectation. The SU-COSCC Ansätz of Datta and Mukherjee [35] takes

this clustering even further by allowing T-T contraction with suitable combinatoric

factors making it a possible theory for benchmarking for us. We find that the gain in

terms of simplicity of formulation and implementation of the UGA-MRCC theories

outweighs the loss in accuracy with respect to the COSCC Ansätz. Secondly, EOM-

CC cluster amplitudes are defined with respect to the ground state while our ts being

µ dependent along with suitable use of spectator blocks leads to properly corrected

excited state amplitudes. A complete theoretical comparison of our theories and the

various EOM-CC/LRT and COS-CC methods is presented in Sec. 3.2 especially in
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the context of orbital relaxation.

In this section, we undertake several exploratory studies of inherent accuracy of the

UGA-SUMRCC and UGA-QFMRCC theories, comparisons between the two theories

as well as the relative e�cacy and consistency of the various schemes proposed by us

in Sec. 2.2. We test the performance of our new Ansätze for three valence sectors:

electron detached states, electron attached states and excited states by benchmarking

our results against FCI wherever possible. Scheme P is the most elaborate scheme

proposed by us and the performance of the other three approaches, viz. Schemes S,

S0 and A, may be studied against it.

As mentioned before, for the 1h and 1p valence sectors, to which the electron

attached and detached states of closed shell molecules and neutral radicals studied

by us belong, Schemes P and S are exactly equivalent as are Schemes A and S0. This

stems from the absence of linear dependencies among the cluster operators. Thus,

we use these molecular states for comparing the performance of Schemes P and A.

Where Scheme P perform significantly worse than Scheme A, we may conclude that

the molecule’s excited state has significant contribution from these functions and we

anticipate that a triples correction involving active orbitals (ie. a CCSDt scheme) will

greatly enhance the accuracy of the description. However, we have not pursued this

aspect in this thesis. For the 1h-1p sector, linear dependence of cluster operators exists

unless proper combinations are taken. Thus, we choose to study the performance of

Scheme S vs Scheme P in this valence sector. This aspect is further analyzed by a

study on the lowest 3⌃ state of LiH in Sec. 2.4.5. For larger computations we have

indicated the theories and schemes adopted at the appropriate places.

For pilot applications, H2O, HF+, F
.

, CH
.

3, OH
.

and NH
.

2 have been chosen as

electron detached states and H2O� and CH
.

as electron attached states of the closed

shell (0,0) sector. We have chosen the excited states of H2O, HF , CH2, BH and

CH+ for comparisons of projection equations vs su�ciency equations in small bases.

The tables indicate that the performance of UGA-QFMRCC and UGA-SUMRCC are

better than EOMCC and the performance of UGA-QFMRCC and UGA-SUMRCC

are comparable to the reference values such as those from FCI and COS-CC results,

where available. Subsequently, we present excitation energies in comparison with

experimental results for H2O and C2H2. All unreferenced results have been computed

by us using GAMESS US- 2007 or 2010 [36]. Results of EOM-CCSD for triplet states

have been obtained using DALTON 2.0 [37]. The geometries and basis sets employed

for our studies are mentioned as footnotes to the corresponding tables. In all cases

we have used orbitals optimized for the vacuum state, specifically the HF function.

We could have instead used the optimized orbitals of the corresponding target states

provided they are the lowest of their symmetry or some sort of average orbitals.

However, the current choice of orbitals allows us to compute several ionized state
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energies very easily using a common set of orbitals and also provides us an opportunity

to demonstrate the strength of our theories to incorporate orbital relaxation e↵ects

in an adequate manner.

Our comparison against FCI shows that the full scheme performs pretty well in all

cases. Keeping in mind that, being solutions of non-variational equations, the errors

may be both positive and negative we see that the full scheme gives results mostly

above FCI. The su�ciency variant, S, performs somewhat erratically in the sense it

may overshoot or undershoot the FCI values. Though this behavior is not observed in

Scheme P, when the comparison is done along di↵erent states of a particular molecule,

the variants using su�ciency are lacking in this quality. The absolute percentage

di↵erence values, on the other hand, shown in Fig. 2.1 clearly show that it is not very

large in comparison with FCI values. Schemes A and S0, wherein certain three-body

blocks have been excluded consistently show a poorer performance indicating that the

excluded blocks often play a significant role in the description of excited states.

The bar chart in Fig. 2.1 represents the performance of Scheme S vis a vis Scheme

P for di↵erent molecules. The results are largely consistent with a few outliers being

the 1A2 and 1B2 states of water in cc-pVDZ basis which are of opposite trend from

the rest of the bases (please refer to Table 2.13) though, in an absolute sense, these

di↵erences are not very large. The reason may lie in some sort of inadequate descrip-

tion of these states in cc-pVDZ basis. We have also seen that the di↵erence values

may be positive or negative which indicates that both ordinary mean and absolute

mean would be necessary to get a feeling of the performance of su�ciency equations

vs the full scheme. The signed mean of all the di↵erence values is 0.00078%, i.e,

a positive number, suggesting that, statistically speaking, the su�ciency results are

lower than the full projection scheme. The reason may be attributed to the greater

number of degrees of freedom in the su�ciency equations. The absolute mean value,

an important qualifier for our set of data is 0.00175%, certainly not a very large value.

The maximum and minimum values and standard deviations of di↵erences are also

reasonable quantities (please refer to Table 2.14). From this analysis we may con-

clude that the dispersion of data for su�ciency as against projection is not high. In

another set of comparisons for Schemes P and S, we have seen a consistent change in

percentage correlation with the increase in the basis size for our theory (please refer

to Table 2.15). There are no sudden jumps in error as evidenced by the small stan-

dard deviation. This is true for both the schemes and hence validates our expectation

that there are no limitations in the description of excited states for our theory with

increasing basis size. The mean and standard deviations are very similar for Schemes

P and S indicating that invoking su�ciency does not a↵ect the change of energy with

increasing basis size.

The trends for accuracy as evidenced by di↵erence from FCI values are the same
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Table 2.3: Ionized states of H2O in cc-pVDZ basis

Method 2B1 M-FCI 2A1 M-FCI 2B2 M-FCI
Scheme P -75.806359 0.533 -75.731910 1.000 -75.555040 3.193
Scheme A -75.804555 2.337 -75.731647 1.263 -75.556011 2.222

COS � CCb -75.804342 2.55 -75.731459 1.451 -75.556294 1.939
SSCCc -75.803116 3.776 -75.729324 3.586 -75.553028 5.205

ROHF � CCSDa -75.804255 2.637 -75.730282 2.628 -75.555214 3.019
UHF � CCSDa -75.804287 2.605 -75.730319 2.591 -75.555278 2.955

EOM-CC -75.809345 -2.453 -75.734969 -2.059 -75.557381 0.852
FCI -75.806892 -75.732910 -75.558233

Geometry:O-H = 1.84345 a.u.; O-H-O = 110.6�

for UGA-QFMRCC and the parent UGA-SUMRCC. Results show a di↵erence of the

order of a mH. The UGA-QFMRCC predicts excitation energies which are consistently

lower than the corresponding value obtained by taking an explicit di↵erence of UGA-

SUMRCC excited state energy and CCSD ground state energy. Due to the unitary

group adapted description of our target state and use of projection equations, higher

body G-blocks (three and four body) are involved. Thus, although the description of

the ground and excited states are well-balanced in terms of ranks of the excitation

operators, there exists a discrepancy at the block level. The use of projection equations

necessitates the involvement of certain three and four body blocks which correspond

to triples and quadruples as in CCSDtq [38]. These could implicitly contribute to an

over-correlation of the excited state as against the ground state which is correlated at

the purely CCSD level. The more or less consistent improvement over EOM-CCSD

is most likely due to the greater incorporation of orbital relaxation.

We would like to draw the attention of the readers to the fact that the results in

Secs. 2.4.1, 2.4.2 and 2.4.3 are somewhat improved from those reported in our first

publication on UGA-SUMRCC [7] as a result of correcting a bug in the program.

However, the conclusions regarding the trends in the numbers remain unaltered.

2.4.1 Electron Detached States

For electron detached states, the orbitals of the target state are the same as that of the

ground state up to first order (Brillouin theorem). Scheme P with full orbital relax-

ation and Scheme A with considerably less relaxation are thus, expected to perform

comparably. Our results validate this point.
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Table 2.4: 2⇧1 ionized state of HF in DZV and cc-pVTZ basis

Method DZV cc-pVTZ
2⇧ M-FCI 2⇧

Scheme P -99.572602 1.391 -99.762090
Scheme A -99.570133 3.860 -99.761351

ROHF-CCSD -99.572847 1.1456 -99.760554
EOM-CC -99.586255 -12.261 -99.763371
VUCCSD - - -99.757401

FCI -99.573993 - -

Geometry:H-F = 1.7328 a.u.

Table 2.5: Electron attached state of H2O in cc-pVDZ basis

Method 2A1
2B2

Scheme P -76.073049 -76.001358
Scheme A -76.072786 -76.000844

ROHF-CCSD -76.072889 -
EA-EOM-CC -76.073436 -76.001873

Geometry:O-H = 1.84345 a.u.; O-H-O = 110.6�

2.4.2 Electron Attached States

For electron attached state, the considerable di↵erence in the orbitals of the reference

and target states compel us to incorporate as much relaxation as possible.

2.4.3 Neutral Radicals

Neutral radicals can be treated as electron detached states of the corresponding anions

or electron attached states of the corresponding cations. However, we must be careful

to ensure that our chosen vacuum is single reference. We present results for F
.

, NH
.

2,

OH
.

and CH3
.

as an electron detached states and CH
.

as an electron attached state.
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Table 2.11: Singlet and triplet excited states of BH using cc-pVDZ basis

Method 1⇧ M-FCI 3⇧ M-FCI 1⌃1 M-FCI 3⌃1 M-FCI
(mH) (mH) (mH) (mH)

Scheme P -25.105068 0.132 -25.169890 -1.299 -24.851627 -1.126 -24.914764 3.061
Scheme S -25.103118 2.082 -25.167822 0.769 -24.850924 -0.423 -24.908551 9.274
Scheme S0 -25.104499 0.701 -25.169678 -1.087 -24.848211 2.290 -24.910691 7.134
EOM-CC -25.102518 2.682 -25.166993 1.598 -24.847535 2.966 -24.913286 4.539

FCI -25.105200 - -25.168591 - -24.850501 - -24.917825 -

Geometry: B-H=2.3289 a.u.

Table 2.12: Singlet and triplet excited states of CH+ using cc-pVDZ basis

Method 1⇧ M-FCI 3⇧ M-FCI
(mH) (mH)

Scheme P -37.886484 -0.358 -37.962947 -1.606
Scheme S -37.886138 -0.012 -37.962014 -0.673
Scheme S0 -37.887068 -0.942 -37.963114 -1.773

EOM-CCSD -37.883039 3.087 -37.959286 2.055
FCI -37.886126 - -37.961341 -

Geometry: C-H=2.137280 a.u.

Use of Non-redundant vs Redundant Excitations

Table 2.13: Scheme S - Scheme P in mH

Molecule State cc-pVDZ cc-pVTZ cc-pVQZ
HF 1⇧ -1.776 -1.889 -1.992

3⇧ -0.959 -1.24 -1.258
H2O 1B1 -2.751 -2.638 -2.656

1A2 -1.689 -1.888 -2.206
1A1 -2.197 -1.792 -1.639
1B2 -2.234 -2.025 -1.977
3B1 -0.959 -1.009 -1.049
3A2 0.206 -0.077 -0.413
3A1 -0.336 -0.343 -0.446
3B2 0.111 -0.099 -0.332

CH2
1B1 0.887 0.108 0.212
3B1 1.668 0.529 0.316

CH+ 1⇧ 0.346 0.858 2.653
3⇧ 0.933 1.016 1.77
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Figure 2.1: Bar-chart showing absolute percent error of S vs P

Table 2.14: Statistical data for percent error of S vs P

abs(S�P)
P ⇤ 100 (S�P )

P ⇤ 100
Mean 0.00175 0.00078
S.D. 0.00143 0.00214

Max di↵ 0.00699 0.00362
Min di↵ 0.00010 -0.00699

Table 2.15: Statistical data for correlation gain with increase in basis size

(CCT-CCD)/CCD *100 (CCQ-CCT)/CCT *100
UGA-SUMRCC(P) UGA-SUMRCC(S) UGA-SUMRCC(P) UGA-SUMRCC(S)

Mean 0.1271 0.1274 0.0625 0.0621
S.D. 0.0198 0.0200 0.0037 0.0045

Max gain 0.1456 0.1453 0.0690 0.0690
Min gain 0.0779 0.0777 0.0553 0.0532
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Quasi-Fock MRCC

Table 2.16: Singlet Excitation Energies (�E) of water in DZV basis

Method Scheme 1B1
1A2

1A1
1B2

UGA-QFMRCC Scheme P 0.322132 0.398896 0.409569 0.498643
Scheme S 0.321385 0.397601 0.408268 0.494970
Scheme S0 0.322443 0.398175 0.408680 0.497743

UGA-SUMRCC Scheme P 0.322465 0.399093 0.410051 0.499078
Scheme S 0.321732 0.397893 0.408828 0.495829
Scheme S0 0.322839 0.398530 0.409075 0.498392

EOM-CCSD 0.317842 0.395145 0.405879 0.494547
FCI 0.322704 0.398912 0.410228 0.497564

Geometry: O(0,0,0),H(0,±0.751155,-0.581606) in Å

Table 2.17: Triplet Excitation Energies (�E) of water in DZV basis

Method Scheme 3B1
3A2

3A1
3B2

UGA-QFMRCC Scheme P 0.293259 0.380042 0.375226 0.449528
Scheme S 0.293661 0.380219 0.375303 0.448740
Scheme S0 0.294947 0.380984 0.375299 0.447629

UGA-SUMRCC Scheme P 0.293501 0.380243 0.375475 0.450457
Scheme S 0.294013 0.380552 0.375911 0.449989
Scheme S0 0.295639 0.381572 0.376610 0.449528

EOM-CCSD 0.289672 0.378106 0.371376 0.446679
FCI 0.294783 0.381390 0.376156 0.450199

Geometry: O(0,0,0),H(0,±0.751155,-0.581606) in Å

Table 2.18: Singlet and Triplet Excitation Energies (�E) of HF in DZV basis

Method Scheme 1⇧ 3⇧
UGA-QFMRCC Scheme P 0.493533 0.470572

Scheme S 0.492702 0.470053
Scheme S0 0.493822 0.471018

UGA-SUMRCC Scheme P 0.493059 0.470113
Scheme S 0.492259 0.469762
Scheme S0 0.493386 0.470861

EOM-CCSD 0.482712 0.460635
FCI 0.492826 0.470770

Geometry:H-F=1.40 a.u.
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Table 2.19: Singlet and Triplet Excitation Energies (�E) of BH in cc-pVDZ
basis

Method Scheme 1⇧ 3⇧
UGA-QFMRCC Scheme P 0.107971 0.043900

Scheme S 0.110134 0.046459
Scheme S0 0.106510 0.043683

UGA-SUMRCC Scheme P 0.109262 0.044440
Scheme S 0.111212 0.046508
Scheme S0 0.109831 0.044652

EOM-CCSD 0.111811 0.047337
FCI 0.113699 0.047626

Geometry: B-H=2.3289 a.u.

Table 2.20: Singlet and Triplet Excitation Energies (�E) of CH+ in cc-pVDZ
basis

Method Scheme 1⇧ 3⇧
UGA-QFMRCC Scheme P 0.114014 0.037854

Scheme S 0.114647 0.039080
Scheme S0 0.112453 0.037271

UGA-SUMRCC Scheme P 0.115143 0.038680
Scheme S 0.115489 0.039613
Scheme S0 0.114559 0.038513

EOM-CCSD 0.118588 0.042341
FCI 0.117478 0.042263

Geometry: C-H=2.137280 a.u.
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Table 2.21: Singlet and Triplet Excitation Energies (�E) of CH+ in 14�5⇡1�
basis [39]

Method 1⇧
UGA-QFMRCC (P) 0.115030
CC3 0.119068
STEOM-CC 0.116128
EOM-CCSD 0.119803
FCI 0.118700

Geometry:Bond length=2.13713 a.u.

Table 2.22: Excitation Energy of water

Method 1B1
1A2

3B1
3A2

Sadlej ANO Sadlej ANO Sadlej ANO Sadlej ANO
UGA-QFMRCC (P) 0.274858 0.277845 0.339898 0.342474 0.258286 0.261563 0.331370 0.334170
EOM-CCSD 0.272035 0.280795 0.336538 0.345359 0.257249 0.266374 0.330241 0.339266
VUMRCC 0.276318 0.264889
Experiment 0.275252a 0.334416b 0.257245c 0.338091c

0.264595b 0.334416d

Geometry:O(0,0,0),H(0,±0.7566,-0.5858) in Å
a. Ref. [40]; b. Ref. [41]; c. Ref. [42]; d. Ref. [43]

Table 2.23: Singlet Excitation Energies (�E) of C2H2 in aug-cc-pVDZ basis

Method 11⇧ 21⇧ 13⇧ 23⇧
UGA-QFMRCC (P) 0.295153 0.309933 0.290207 0.302958
EOM-CCSD 0.304774 0.318854 0.309009 0.314472
Experiment 0.299872a 0.331109a 0.296199 0.314206

Geometry:C(0.000,0.000,1.66245),H(0.000,0.000,0.60085) in Å
a. Ref.([44])

2.4.5 An Investigative Study on LiH

In the ground state, equilibrium bond length of LiH is 1.6Å. We have chosen cc-pVDZ

basis for this molecule. Our model space contains 2 model functions of A1 symmetry

and two others of B1 and B2 symmetry. This choice of model space provides results

which are in good agreement with the FCI values. But the results with one dimensional

model space for A1 is a bit away from FCI suggesting the multi-reference character of

the state 11⌃. As the results overshoot the FCI values, we can predict that the state
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Table 2.24: Singlet excited states of LiH using cc-pVDZ basis in its ground
state equilibrium geometry

Method Dim. of 11A1 M-FCI 1B1 M-FCI 21A1 M-FCI
model sp. (mH) (mH) (mH)

Scheme P 1 -7.889919 -2.607 -7.850524 -0.535 - -
Scheme P 2 -7.889105 -1.793 - - -7.778169 -1.942
EOM-CC - -7.887235 0.077 -7.849942 0.047 -7.776210 0.017

FCI - -7.887312 - -7.849989 - -7.776227 -

Table 2.25: Triplet excited states of LiH using cc-pVDZ basis in its ground
state equilibrium geometry

Method Dim. of 13A1 M-FCI 3B1 M-FCI 31A1 M-FCI
model sp. (mH) (mH) (mH)

Scheme P 1 -7.904557 -3.336 -7.862832 0.411 - -
Scheme P 2 -7.901738 -0.517 - - -7.805628 -1.776
EOM-CC - -7.901194 0.027 -7.863213 0.03 -7.803838 0.014

FCI - -7.901221 - -7.863243 - -7.803852 -

11⌃ contains some contribution of the ground state in its description. Otherwise, the

trend in results under di↵erent schemes is quite trustworthy to suggest that we can

employ the most computationally e�cient scheme for our subsequent studies.

Another study we undertake here is to study the role of choosing linearly inde-

pendent (LIN) cluster operators. We have chosen the lowest 3⌃ state of LiH for our

investigations. In Table 2.26 we enlist the classes of cluster operators chosen in the

various schemes we have used. The di↵erence of the energies computed by our UGA-

SUMRCC method with FCI along the PES of the 3⌃ state of LiH has been plotted in

Fig. 2.2 for these schemes. We find that the parallelity of the error plot is maximum

when proper LIN cluster operators are used (green line). As expected, discarding the

cluster operators which are dependent altogether results in a loss of correlation energy

thereby increasing the di↵erence with respect to FCI (red line). The destabilizing ef-

fect of linear dependence in the excitation manifold is also evident (black line). We

may thus infer that choosing a LIN set of operators is advantageous from the point

of view of stability and consistency of the computed energies.



80 Chapter 2

Table 2.26: Choice of the operator manifold for computing the PES of the
lowest 3⌃ state of LiH

Curve Ea
i Eua

iu Eva
iv Ea

u Eva
uv Eua

vu Eu
i Evu

iv Euv
iu

Black Y Y Y Y Y Y Y Y Y
Red Y N N Y N N Y N N
Green Y Y Y Y N N Y N N

Figure 2.2: PES of the lowest 3⌃ state of LiH using various choices of excitation
operators (see Table 2.26)
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Orbital Relaxation on Ionization and

Excitation in the Presence of Electron

Correlation: A Study on Core Electrons

A large part of this chapter has been taken from:S. Sen, A. Shee and D. Mukherjee, Mol. Phys.

111, 2625 (2013)
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3.1 Introduction

It is found that the Koopman’s IP [1] does not match well with experimental IPs such

as from X-ray photoelectron spectroscopy for core electron ionizations. On the other

hand, taking explicit di↵erence of state energies, ie. by the so-called �SCF methods,

gives a much better description. For example, for the N 1s ionization in NO, �SCF

predicts an IP of 409.22 eV (at the basis set limit) against the experimental value

of 410.3 eV [2]. The Koopman’s theorem result is above 430 eV! This observation

at the mean-field level indicates that the orbitals for the GS and ionized state di↵er

greatly for core-electron ionizations and using proper orbitals is vital. On the other

hand, for correlated descriptions the use of common orbitals for correlating the ground

and ionized state is very attractive since it allows a more balanced description of

the di↵erential correlation which accompanies ionization or excitation and allows the

common correlation terms of the two states concerned to cancel out giving better

energy di↵erences. These two apparently incompatible requirements may be mutually

resolved by formulating a theory with high implicit orbital relaxation making use of

the Thouless theorem [3]. This is the path we have followed in our formulation.

As shown by Thouless, action of an exponential operator with single excitations

acting on a determinant is equivalent to creating another determinant with rotated

orbitals. Thus, for SRCC, T1 represents orbital relaxation under correlation of elec-

trons. In an MRCC framework when the targeted state belongs to a valence sector

di↵erent from that for which the orbitals have been optimized, the T1 operators also

account for orbital relaxations for this change. For example what we deal with in

this chapter is the computation of energies of core-electron ionized and excited states

using the optimized orbitals of the neutral closed shell ground state. In this case

an appropriate choice of the wave operator for the ionized/excited state should not

only ensure a proper modeling of the electron correlation of the ionized/excited state

but also su�cient orbital relaxation. In fact the role of orbital relaxation becomes

important whenever di↵erent charge sectors are involved such as in the case of ionized

states, though the extent of such relaxation becomes very prominent for core electron

ionization or even, excitation. Magnitude-wise the valence electron ionizations and

excitations are accompanied by less orbital relaxation but it needs to be addressed

because, clearly, when the orbital relaxation is not as severe as for core electron ion-

ization/excitation, it is still as important as the di↵erential correlation and must be

incorporated. It would thus be be beneficial to have a theory which takes both into

account but in an unbiased fashion. In our UGA-SUMRCC and UGA-QFMRCC the-

ories we propose to take care of this by a coupled modeling of orbital relaxation and

correlation via the Thouless transformation induced on ionized/excited states with

neutral orbitals which is inherent in the normal-ordered multi-exponential Ansätz we
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have used.

3.2 Theoretical Considerations

As mentioned before, our UGA-SUMRCC and UGA-QFMRCC theories are spin-free.

This is achieved by unitary group adaptation of the T operators which are labeled

by spatial orbitals of a common closed shell vacuum and the resulting problem of

non-commutativity of the Tµ/Sµs is alleviated by a normal-ordering of the multi-

exponential Ansätz with respect to a common closed shell vacuum. A problem with

such an approach is that the orbitals to be used are for one function which may not

be one of the model functions or even of the same valence sector making it essential to

have a mechanism for correction of orbitals in the wave operator Ansätz. In the theo-

ries formulated in this thesis we have chosen to use the Thouless parametrization for

orbital relaxation implicit in the exponential Ansätz of coupled-cluster to take care

of the orbital relaxation both due to ionization/excitation and due to correlation.

These two e↵ects are, however, intermingled and cannot be separated out numeri-

cally although one may analyze the mechanism by which they are introduced. Before

we embark on this analysis, we may point out that, in coupled-cluster a Thouless

parametrization with eT1 is only on the ket function, the bra function remains unre-

laxed. This feature carries through into our formalisms but our results indicate that

this is su�cient, at least for the molecules we have studied. A fuller parametrization

for relaxation of both the bra and ket functions would have been a unitary transfor-

mation of the orbitals via e� where � is an anti-Hermitian operator. However, � is

a combination of excitation and de-excitation operators, � = T � T †, making them

non-commuting. This makes such a theory intractable due to the occurrence of non-

terminating series of operators. This is useful only when orbital relaxations to a given

order under some external perturbation needs to be evaluated such as during the so-

lution of the coupled perturbed Hartree-Fock (CPHF) equations for computation of

molecular properties.

If the non-commutativity of the Tµs is retained in the Ansätz (ie. no additional

normal ordering of the Ansätz is done) the T-operators must be allowed to contract

among themselves leading to interminable chains of T operators in both the direct

and the coupling terms. A so-called double-curly Ansätz, {{eTµ}} was developed by

Datta and Mukherjee [4, 5] where contractions among certain types of operators were

allowed with suitable evaluation of combinatoric factors leading to the Combinatoric

Open-Shell Coupled Cluster (COS-CC) theories. In this case, the evaluation of the

chains of one-body excitation inducing operators results in full clustering analogous to

a spinorbital based theory and a high degree of Thouless relaxation is possible. How-

ever, the evaluation of chains of operators and the determination of the corresponding
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combinatoric factors is more involved than a theory using the normal-ordered clus-

ter Ansätz in UGA-SUMRCC theory. The µ-dependence of the operators Tµ and

Sµ allows us to delete valence spectator excitations and thus allows full exponential

structure of the wave operator for all those excitations which do not involve valence

destructions. This feature alone makes the UGA-SUMRCC theory worth exploring.

Assuming we are to use the normal ordered Ansätz, we can overcome the loss of clus-

tering to a considerable extent by clubbing together certain operators such that the

valence destruction containing operators which are proportional to lower body oper-

ators do not occur explicitly but their e↵ect is implicitly taken to all powers of the

lower body operator. For example, contributions from the composites Ga
i and GaA

iA

(whose nature has been discussed in Chp. 2) are added together and the sum con-

tributes to the equation for T a
i . The operator T aA

iA is discarded. However, operators

like TAa
iA ,T I

i and T a
A terminate at linear power due to their inability to contract with

each other unlike in COS-CC. We will come back later in this section to this issue in

our analysis of the structure of our theory vis a vis. other comparable theories. This

would apparently appear to be a great loss of relaxation but interestingly, the cou-

pling terms of Eqs. 2.25 and 2.47 which are significantly di↵erent in structure from

the corresponding terms of the spinorbital-based theories reintroduces some higher

powers of these operators through the contraction of the Tµs with W⌫µ which contains

Tµs.

Since the formulation of our UGA-QFMRCC is tangentially related to the Fock-

space MRCC (FS-MRCC) [6, 7, 8], Fock-space Eigenvalue Independent Partitioning

(FS-EIP) [9] and the Similarity Transformed Equation of Motion CC (STEOM-CC)

theory [10, 11, 12], we think that a comparative study of these theories will serve

to better elucidate the mechanism of orbital relaxation in this class of theories. The

arguments with regard to the Sµ operators in UGA-QFMRCC essentially hold true

for the Tµ operators in UGA-SUMRCC as well.

All the theories including our UGA-QFMRCC use the factorized cluster Ansätz

for the wave operator of the excited state:

⌦ = eT⌦v (3.1)

where eT is the wave operator for the ground state in the CC form and ⌦v intro-

duces the e↵ects of valence correlation, core-valence interaction and orbital relax-

ation/di↵erential correlation. The physical content of ⌦v is di↵erent in the four the-

ories leading to the e↵ective Hamiltonian, H̄eff being di↵erent for the three theories

although the ground state energy contribution is exactly the same for the same trun-

cation scheme for the GS. The FS-MRCC, the FS-EIP and the STEOM-CC all invoke
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the concept of valence universality [6] and express ⌦v as:

⌦v = {eS} (3.2)

where S consists of cluster operators of di↵erent valence sectors: S = S(0,1) + S(1,0) +

S(1,1). S(m,n) are the valence cluster operators involving destruction of ’m’ holes and

’n’ electrons occupying the mh and np active orbitals in the model functions. In the

FS-MRCC, the S(1,0) and S(0,1) amplitudes are solved to get the information on the

IP and EA sectors respectively. The additional correlation, including the dispersion

interaction between the active hole and particle for the (1,1) sector is taken care of

by the S(1,1) cluster amplitudes. In the FS-EIP, the Bloch equation for every valence

sector is cast into an eigenvalue equation obtained in the union space of {�(m,n)
µ }, and

the set {�l(m,n)
µ ⌘ "l(m,n)

µ �(m,n)
µ } where {�(m,n)

µ } denotes the set of model functions for

the (m,n) sector and the set {�l(m,n)
µ } are the virtual functions obtained by the action

of excitation operators "l(m,n)
µ on �(m,n)

µ . In STEOM-CC, a technique similar to FS-EIP

is used with the proviso of an approximation that the S(1,1) amplitudes are ignored

altogether. In our UGA-QFMRCC, all the cluster operators are for the (1,1) sector

and there is no hierarchical build-up through the (0,1) and (1,0) sectors to the (1,1)

sector. An advantage of FS-EIP or STEOM-CC, as currently implemented, lies in

that the (1h, 0p) and (0h,1p) valence sector equations can be exactly cast as a matrix

eigen-problem, enabling easy and intruder-free evaluation of S-amplitudes. Although

in principle, our UGA-QFMRCC also can be cast as a matrix eigen-problem, thereby

obviating intruders in a similar manner, we have not implemented such a strategy yet.

We tend to look upon the transcription of the set of Bloch equations to the matrix

eigen-problem as a technique to handle intruders.

The strength of the UGA-QFMRCC theory lies in the model-function dependence

of the S-amplitudes (the so-called µ dependence), which eliminates altogether the

artificial use of higher rank S-amplitudes with direct spectator scatterings. This in

itself ensures that all the S-amplitudes have knowledge of all the valence occupancies

of the model functions. If we refer to the Ansätz of our wave operator in Eq. 2.34,

the factorized Ansätz eT{eSµ} for the component ⌦µ of the wave operator acting on

�µ ensures that not only the ground state dressing via eT of the Hamiltonian makes

the direct computation of excitation energy possible but also it allows us to use S-

amplitudes involving excitations only while incorporating the involvement of all the

active holes and particles present in �µ. As an example, an operator Sµ inducing

excitation from i ! a for a function �µ with active occupancy (I,A), subsumes in it

interaction with I and A separately as spectators as also the interactions where I and

A are both involved.

As depicted in (Fig. 3.1) single excitations like Ea
i , E

aA
iA and EAa

iA among others
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are involved in correction of orbitals for model spaces where A is an active virtual

orbital (say, for a 1p or 1h-1p model space). In a FS-MRCC or FS-EIP/STEOM-CC,

EaA
iA , EAa

iA , EaI
iI and EIa

iI which are responsible for orbital relaxation due to change in

valence occupancy are present up to linear power only while in UGA-QFMRCC, the

set of operators Ea
i , E

aA
iA , EaI

iI , E
aIA
iIA and EaAI

iIA are clubbed together as ✏a(µ)i (denoted

with bold vertices in (Fig. 3.2) which occurs to all powers. Hence, more physics is

incorporated in UGA-QFMRCC on two counts: (a) knowledge of the S-amplitudes re-

garding the valence occupancies I and A and (b) a full exponential involving Sµ
a
i (with

�µ ⌘ �A
I ). When EAa

iA is LIN with Ea
i , however, it occurs up to linear power even in

UGA-QFMRCC. The correlation on the other hand is incorporated by the two body

excitation operators and di↵erential correlation by three body operators with direct

and exchange spectators as in Fig. 3.2. Thus, in FS-MRCC or FS-EIP/STEOM-

CC, a CCSD truncation scheme has no such di↵erential correlation operators while

the UGA-QFMRCC easily incorporates the direct spectator contributions to all or-

ders. The exchange spectator blocks implicitly contribute in the projection equations.

Other than spectator scatterings, orbital relaxation and correlation relaxation also

occur in presence of multiple valence occupancies. In order to fully include all such

contributions, it would be necessary to use up to (m+n+2) rank operators for an

(m,n)-valence sector such as in Fig. 3.3 which is not a practical possibility in FS-

Figure 3.1: FS-MRCC/FS-EIP/STEOM-CC [(a),(b)] vs UGA-QFMRCC [(d),(e)]-
Orbital relaxation diagrams: Note that for the (0,1) sector and the target (1,1) sector,
the operator in (b) from normal-ordered ⌦v terminates at linear power while (d)
subsumes (a) and (b) and thus, occurs to all powers. Following the usual convention,
inactive lines are denoted by single arrows and the active lines are denoted by double
arrows. The filled circle vertex in Figs. (d) and (e) depict the model space dependence
of the inactive excitation operator of Sµ.
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Figure 3.2: FS-MRCC/FS-EIP/STEOM-CC vs UGA-QFMRCC-Di↵erential correla-
tion:Note that for the (0,1) sector, the operators (b) and (c) from normal-ordered
⌦v are necessary for introducing di↵erential correlation but are absent in a singles-
doubles truncation while (d) subsumes (a) and (b) and thus, occurs to all powers. The
operator, (c) is absent in UGA-QFMRCC but some implicit contribution through the
G-block shown in (e) is possible.

Figure 3.3: FS-MRCC/FS-EIP/STEOM-CC vs UGA-QFMRCC-Orbital relaxation
for the (1,1) sector would, in principle require such a three-body operator from a
normal-ordered ⌦v which is implicitly present in the Tµ

a
i of our UGA-QFMRCC
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MRCC/FS-EIP/STEOM-CC with spectator scattering of ’m’ holes and ’n’ particles

in both direct and exchange modes. However, the direct spectator scatterings in the

FS-MRCC can be subsumed in UGA-QFMRCC with low body excitation operators

labeled by the CSF index, µ, and such operators can be treated to all powers. The

operators with some exchange spectator scatterings would still be having higher ranks

than just the excitation ranks, but - unlike in the FS-MRCC/ FS-EIP/ STEOM-CC -

µ dependence via inclusion of higher body blocks would not necessitate the inclusion

of all the spectator labels. Some other excitations like EI
i and Ea

A will terminate at

the linear power in both the theories. If we ignore three and higher body excitations

(exchange spectators, in particular), in FS theories they then never appear in the

Bloch equation. In contrast, although the three/four body Sµs also do not appear in

UGA-QFMRCC, the corresponding blocks do, enriching the physical content implic-

itly in UGA-QFMRCC. In STEOM-CC, as mentioned above, one ignores the S(1,1)

amplitudes and it would miss the dispersion interaction in the wave function. Since

our working equations have G-blocks with I and A both interacting, the dispersion

interaction is incorporated. Inclusion of such multiple spectators becomes particu-

larly relevant for the description of di↵erential correlation accompanying excitation.

We can simply introduce µ-dependent double excitations of the type ij ! ab while in

EIP/ STEOM-CC we would need at least a three-body operator with spectator active

scattering or even a four-body operator with the pairs of I and A. Absence of this dif-

ferential correlation in a truncated CCSD scheme is evident in the computed energies

from EIP or STEOM-CC vis-a-vis UGA-QFMRCC. This is a general advantage of

any theory based on or derived from the Jeziorski-Monkhorst Ansätz as against the

Valence-Universal Ansätz. Moreover the Quasi-Fock formalism has cluster amplitudes

for just the (0,0) and (1,1) sectors, thereby, bypassing entirely the necessity of having

to go through the 1h-0p and 0h-1p sectors before reaching the target, 1h-1p sector.

The number of cluster amplitudes in UGA-QFMRCC is thus less than that in EIP

or STEOM-CC to include equivalent physics, which is further enhanced by the pos-

sibility of the appearance of all powers of Sµ which do not have exchange spectators.

This would be best demonstrated in situations where orbital relaxation is very high

such as core electron ionization and excitation. Preliminary investigations indicate

that UGA-QFMRCC is considerably better than EOM-CC in these cases, although

COS-CC [4] is better, as expected, though only marginally so.

Another allied and widely applied theory is SAC-CI [13, 14] which uses an ex-

ponential Ansätz for describing the correlation of the ground state adapted to the

correct spin and spatial symmetry and a linear, CI-like Ansätz for generating the

ionized/excited states of interest. It is structurally very much allied to the CC-LRT

[15, 16, 17, 18] or EOM-CC [19, 20, 21, 22] methods (they di↵er in approximations

used, viz. in details but not fundamentally). One of its variants, SAC-CI (R) [23, 24]
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uses orbitals of the ground state HF function. Another variant, SAC-CI (OR) [25],

takes the orbitals of the core-ionized state in a similar setting. The SAC-CI for core

ionized/excited states require higher order operators for reasonable accuracy. These

higher body operators simulate the powers of h-p excitations which are absent in a

SD truncation scheme of a linearized ionization/excitation operator. The correspond-

ing higher order IP- and EA-EOM-CC theories have also been studied [26, 27]. Our

results show that, using only up to double excitations we have been able to match or

even supersede the accuracy of SAC-CI (R) using up to triple excitation operators.

3.3 The Role of Relativity

Core electrons feel the presence of the nuclear charge of the atom more strongly

than the inner or outer valence electrons and hence, move faster. For example, the

1s electron of even a medium-heavy atom like Zn has a velocity of approximately

17% of light ! This would necessitate a relativistic treatment of the electron for

even reasonable quantitative accuracy. However, for up to medium-heavy nuclei, the

relativistic e↵ect is mostly confined to the kinetic energy operator. This is known

as the scalar relativistic e↵ect. Of course, with the increase of the nuclear charge of

the atom from which the core electron is ionized/excited, spin-dependent relativistic

e↵ects start getting important.

While it is possible to treat relativistic e↵ects perturbatively [28], a fully relativistic

treatment of the electron requires that we abandon the Schrödinger equation in favor

of the Dirac equation. The explicit time-independent Dirac equation may be written

as:

Ĥ = c↵ · (�i~r+ eA) + �mc2 + V̂  = E ; V̂ = �e� (3.3)

where, ↵ and � are the Dirac matrices composed of the Pauli spin matrices, �, and

the 2⇥ 2 unit matrix I2.

↵ =

"
0 �

� 0

#
; � =

"
I2 0

0 �I2

#
. (3.4)

The other symbols have their usual meanings. Owing to the 4⇥ 4 ↵ and � matrices,

the wave functions obtained as a solution to Eq. 3.3 are represented by 4-component

vectors with pairwise large and small components for up and down spins, ie.  ↵
L,  

�
L,

 ↵
S and  �

S for a free electron. The pair of large and small components for both spins

are called 2-component spinors or bispinors and are related to the Pauli spinors. It

is also possible to work with 2-component wave-functions by an exact transformation

of the 4-component Dirac equation to an e↵ective 2-component equation called in

literature as X2C [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].
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For an electron in a molecule, the weak magnetic fields generated by the nuclei may

be safely neglected and we may forget the vector potential, A, in the Hamiltonian.

The scalar potential, �, is simply the Coulomb potential of the nuclei and electrons.

These considerations lead to the Dirac-Coulomb Hamiltonian,

ĤDC =
nX

i=1

ĥD(i) +
nX

i<j

1

rij
+

NX

I<J

ZIZJ

rIJ
(3.5)

where, ĥD is the one electron Dirac operator in the molecular field of the nuclei (I,J,

etc.),

ĥD = �mc2 + c(↵ · p) + V̂eN . (3.6)

Though this Hamiltonian is not Lorentz invariant, and contains no relativistic treat-

ment of electron-electron interactions, it is su�cient for our purposes as we work in

the frame of the Born-Oppenheimer approximation [42] and we are only interested in

the relativistic behavior through the kinetic energy term which is the most important

for medium-heavy atoms. Approximating the electron-electron Coulomb interaction

as a mean-field, one is led to the Dirac-Fock or Dirac-Hartree-Fock (DHF) theory

exactly analogous to the non-relativistic Hartree-Fock theory. A solution of the DHF

equation leads to both positive energy solutions for the electronic states and negative

energy solutions. This indicates that a simple variational principle cannot be used for

optimizing the mean-field function and one must employ the ‘minimax’ principle to

avoid variational collapse.

A somewhat simpler, and computationally more attractive approach for core ion-

ization and excitation studies, especially in conjunction with our spin-free MRCC

theories, is to start out with the spin-free part of the Dirac-Coulomb Hamiltonian,

and compute the positive energy orbitals via a minimax principle to get the spin-free

Dirac-Fock orbitals. The separation of spin-free and spin-dependent terms is possible

in the Dirac equation as shown by Dyall [43] by a change of metric suggested earlier

by Kutzelnigg [28], "
 L

 S

#
!

"
 L

�L

#
(3.7)

with

 S =
(� · p)
2mc

�L. (3.8)

The Dirac equation, Eq. 3.3, then, splits up into two coupled equations involving only
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the kinetic energy operator, T̂ = (�·p)2
4m2 as the coupling operator:

"
V̂ T̂

T̂ { (�·p)V̂ (�·p)
4m2c2

� T̂}

#"
 L

�L

#
= E

"
1 0

0 T̂
2mc2

#"
 L

�L

#
(3.9)

The Hamiltonian corresponding to Eq. 3.3 can be separated into a spin-dependent

and a spin-free part as given below:

Hsf
DC =

"
V T

T pV̂·p
4m2c2

#
(3.10)

Hsd
DC =

"
0 0

0 � i�·(pV̂⇥p)
4m2c2

#
(3.11)

To arrive at this separation, the following identity has been used:

(� · p)V̂ (� · p) = (� · p)(� · V̂p) = p · V̂p� i� · (p⇥ V̂p) (3.12)

We use the spin-free DHF (SF-DHF) function as the starting point for incorpo-

ration of electron correlation using our set of UGA-MRCC theories. Upto atoms

with medium nuclear charges, the scalar relativistic contributions dominate and in

the orbitals obtained from the spin-free DHF theory they are already incorporated.

An additional advantage is that the functions,  L and �L may be expanded in the

same finite basis set. The exact 2-component analogue of the SF-DHF theory was

also developed and is called the SF-X2C [44, 45, 46, 30, 32, 47, 48, 37, 35, 49] the-

ory. Our studies focus on the innermost core orbital, ie. the 1s orbital where there

is no spin-orbit coupling and the dominant relativistic e↵ect is the modification of

the kinetic energy. We have undertaken to study the ionization and excitation of the

core 1s electron in this chapter, and will compare the NR and relativistic (R) results

against experimental values to assess the importance of this simple relativistic e↵ect.

The inclusion of spin-orbit coupling as a perturbation on the spin-free function is

eminently possible and several studies [50, 51] indicate that this is a good approach

at least for medium-heavy elements.

3.4 Molecular Investigations

3.4.1 Relative Orbital Relaxation for Di↵erent Theories

The relative amounts of orbital relaxation achievable by di↵erent theories when the

Hamiltonian used for the variational optimization of the orbitals is di↵erent from the

actual Hamiltonian used in the theory (ie. all correlated theories) may be demon-

strated by starting out with di↵erent sets of orbitals obtained using di↵erent Hamil-
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Table 3.1: BeH
.

radical in ANO basis

Method Orbitals Used State Energy M-FCI
UGA-SUMRCC (P) HF orbitals of BeH� -15.204797 0.834
UGA-SUMRCC (P) HF orbitals of BeH+ -15.204667 0.964
UGA-SUMRCC (P) ROHF orbitals of BeH

.

-15.204481 1.150
UGA-SUMRCC (T) HF orbitals of BeH� -15.205284 0.347
UGA-SUMRCC (T) HF orbitals of BeH+ -15.204241 1.390
UGA-SUMRCC (T) ROHF orbitals of BeH

.

-15.205041 0.590
SU-COSCC [4] HF orbitals of BeH� -15.205360 0.270
SU-COSCC [4] ROHF orbitals of BeH

.

-15.205759 -0.128
EOM-CCSD HF orbitals of BeH� -15.201809 3.8218
EOM-CCSD HF orbitals of BeH+ -15.204748 0.8828
ROHF-CCSD ROHF orbitals of BeH

.

-15.204798 0.833
FCI - -15.205631

tonians and comparing the energies obtained. The less sensitive the energy is to the

nature of the starting orbital, the more the capacity for orbital relaxation of the theory.

We have chosen the doublet BeH radical at its equilibrium bond length of 1.32Åfor

our demonstration. We use three sets of starting orbitals, viz. those optimized for

the BeH+ cation, BeH� anion and the ROHF orbitals of the BeH. itself. The results

obtained in an ANO triple zeta basis are presented in Table 3.4.1. As expected SU-

COSCC incorporates much higher orbital relaxation than our UGA-SUMRCC theory

as evidenced by the relative insensitivity of the SU-COSCC state energies with re-

spect to the choice of orbitals than our present theory. However our formulation is

more easily extendable to higher valence sectors unlike the SU-COSCC formalism.

EOMCC, as expected, is the most sensitive.

3.4.2 Core Electron Ionization and Excitation

In this subsection, we will present results for core ionized states of H2O, CH4, HF ,

NH3 and CO with suitable comparisons with COS-CC, SAC-CI and EOM-CC and

core excited states of H2O, N2 and CH4 with comparisons with spinorbital based Mk-

MRCCSD, BW-MRCCSD and EOM-CC. We have presented a comparative study of

three closely allied methods developed by us: (a) A straightforward use of the UGA-

SUMRCC method with the SD truncation to describe the core-ionized/core-excited

states with the ground state energy-computed by the usual single reference (SR)

CCSD subtracted to generate the corresponding energy di↵erences. The model space

is comprised of certain h-p excited CSFs involving the core and some low-lying virtual

orbitals as active orbitals; (b) Using the UGA-QFMRCC where the ground state

cluster amplitudes feature in the computation of the ionized/excited stae allowing us
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to evaluate the core-IP/core-EEs directly. (c) Using a model space containing �0 and

the h-p excited CSFs involving the core orbitals as the hole we may generate excitation

energies directly by dropping the vacuum energy h�0|HeT |�0i completely from the

diagonal elements of the matrix of the e↵ective Hamiltonian.The three approaches

have been denoted respectively as: UGA-SUMRCC, UGA-QFMRCC and UGA-IIMS-

SUMRCC in Tables 3.2-3.7. The excitation energies calculated by Kowalski et al. [52]

using Mk-MRCCSD and BW-MRCCSD consider a multi-reference description of both

the excited and ground state using di↵erent CASs and hence are not, in a strict sense,

comparable to ours. Hartree-Fock orbitals of the ground state are used in all cases

so that the phenomenon of orbital relaxation may be amply demonstrated. The spin

adaptation of the wave function in our theories also modifies the computed excitation

energies but due to the interplay of several factors at the same time, the role of

spin adaptation itself is not immediately apparent. A study of properties sensitive

to the spin of the wave function may be expected to demonstrate this aspect more

conclusively.

Core electron phenomena are accompanied by strong orbital relaxation and cor-

relation changes. This may, in principle, be taken care of by Thouless-e↵ects in

coupled-cluster theories. As explained in Section 3.2, theoretically speaking, our the-

ories account for more relaxation than EOM-CC and our results should reflect this

fact. Moreover, spinorbital based Mk-MRCCSD and BW-MRCCSD contain a com-

plete clustering of single excitation inducing operators and therefore incorporate as

much Thouless relaxation as feasible under a CCSD scheme. The closeness of our core

excitation energies with Mk-MRCCSD and BW-MRCCSD to within a few tenths of

an eV is an indicator of this. The spin contamination of the wave function in Mk-

MRCCSD and BW-MRCCSD is another matter unrelated to the relaxation of orbitals

and we do not discuss this here. They will have spin contamination only for core IPs

and not for core EEs (singlet). The SAC-CI (R) results presented here use up to triple

excitation operators and are hence not suitable for theoretical comparison. However,

the fact that our numbers using SD truncation for core ionized states are very similar

to SAC-CI (R) with three-body operators and also approaches high accuracy exper-

imental results is a clear sign of incorporating appropriate physics at low truncation

in UGA-SUMRCC and UGA-QFMRCC theories indicating how important physics

can be captured at the SD truncation level, which will require higher body operatorss

when Thouless-like parametrization is not used. The comparisons with EOM-CC are

somewhat erratic as EOM-CC itself gives erratic levels of accuracy with change in ba-

sis and across di↵erent molecules. EOMCC does remarkably well in certain cases and

fails entirely in others. Our studies indicate that for core excitations, all three vari-

ants of our theory perform consistently better than EOM-CC in di↵erent bases and

for di↵erent states presumably due to better mechanism for relaxation of orbitals and
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correlation. However, for diabatic core ionization energies of CH4 and NH3, EOM-

CC outperforms our theories and SAC-CI (R). It must be noted that our benchmark

numbers are experimental and meaningful comparison would necessitate much more

involved study using the same basis in the full CI limit to have the proper comparison.

This has not been undertaken at this preliminary stage of development of our theories.

In view of this, the quality of the EOM-CC numbers for CH4 and NH3 may just as

well be due to a cancellation of errors as it might be an indication that relaxation

through higher powers of one body excitations is insignificant for these molecules.

The latter reason seems unlikely, as in that case, theories with better mechanism

for Thouless-relaxation, viz. our UGA theories and SAC-CI (R) would have yielded

equally accurate results. The ionization energies computed using our UGA-SUMRCC

closely mirror COS-CC to within a few tenths of an eV indicating how closely we

approach the e↵ect of full exponentiation in a JM-like COS-CC Ansätz.

Secondly, the choice of basis should be such as to provide the function space for

accurate description of core ionized and core excited states. Core ionized states only

require the addition of core correlation functions such that the loss in correlation

may be adequately modeled. Core excited states present a much bigger challenge

since core electrons are often excited to loosely bound Rydberg states which are not

well-described by standard bases. Thus, experimental excitation energies are di�cult

to reproduce and interpretation of core excitation spectra remain challenging. We

present high accuracy experimental data for both core ionization and excitation and

observe that while core ionization energies are closely reproduced and improve sys-

tematically with improvement in bases, experimental and computed core excitation

energies vary significantly. More detailed studies using Rydberg orbitals and special

manipulation of contraction co-e�cients of the Gaussian basis have succeeded to ap-

proach the experimental values. In this paper, we present preliminary applications

of our newly developed theoretical formulations and thus, such details have not been

considered. However, care has been taken to clarify the extent of comparison with

other theories.

Thirdly, geometry considerations are crucial, depending on the nature of the ex-

periment we wish to compare with. We specifically mention in each case if the energy

computed is diabatic (di↵erent geometries for ground and excited/ionized state taken

from experiment or as used in the computations presented for comparison) or adia-

batic (excitation/ionization at ground state experimental geometry). Where spectral

data has been analyzed, the (0,0) vibrational band is considered for comparison with

our computed energies. The geometries considered are mentioned as footnotes to the

respective tables. Vibrational corrections have not been undertaken. All integrals

were obtained from GAMESS-US [53]

There is a close correspondence between the IP/EE values for the example molecules
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Table 3.2: Adiabatic Core Ionization Energies for H2O

Basis Ionization �UGA- QF-Type �COSCC [4] EOM- Expt. [54]
SUMRCC COSCC [4] CCSD [55]

cc-pVDZ O 1s�1 541.97 542.29 542.11 543.27 539.78
cc-pVTZ O 1s�1 539.02 539.36 539.14 540.66
cc-pcVTZ O 1s�1 539.24 539.55 539.34 541.06

Geometry: R (O-H) = 0.9772 Å ⇥ (H-O-H) = 104.52
Energies are in eV

Table 3.3: Diabatic Core Ionization Energies for CH4, HF and NH3

Molecule Basis Ionization �UGA-SUMRCC SAC-CI (R) [56] EOM-CCSD [55] Expt. [56]
CH4 cc-pcVTZ C 1s�1 290.50 290.50 290.83 290.86
HF cc-pcVTZ F 1s�1 693.40 693.89 695.42 693.80
NH3 cc-pcVTZ N 1s�1 405.22 405.15 405.71 405.52

Geometries for G.S.:
R (C-H) = 1.087Å, ⇥ (H-C-H) = 104.3; R (H-F) = 0.917Å ; R (N-H) = 1.014Å, ⇥ (H-N-H) = 107.2
Geometries for Ionized State:
R (C-H) = 1.039Å, ⇥ (H-C-H) = 104.3; R (H-F) = 0.995Å ; R (N-H) = 0.981Å, ⇥ (H-N-H) =
113.6Å
Energies are in eV

Table 3.4: Adiabatic Core Ionization Energies for CO

Basis Ionization �UGA-SUMRCC �COSCC SAC-CI (R) [56] EOM-CCSD [55] Expt. [57]
cc-pVTZ C 1s�1 295.25 295.28 296.13 297.02 296.2
cc-pcVTZ C 1s�1 295.67 295.71 - 297.55

Geometry: R (C-O) = 1.1283Å
Energies are in eV

studied by us as computed by the three theories, indicating that the essential physics

incorporated by these theories are more or less similar. We ascribe such closeness of

the results to the full exponential structure of all operators of Tµ/Sµ where valence

destruction is not involved. Such is not the case for the VUMRCC approach. In fact,

even for the core-ionization in the VUMRCC, the e↵ective wave operator for a �µ is

just eT{1+Sµ} whereas for most of the components of Sµ the e↵ective wave operator

for the UGA-QFMRCC is eT+S
µ with a full exponential structure. Thus, it does not

really matter much whether a separation of the ground state cluster operator is made

as above or one simply uses Tµ = T + Sµ as the variable.
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Table 3.5: Adiabatic Core Excitation Energies for H2O

Basis Excitation �UGA- �UGA - UGA- EOM- Mk-MRCCSD [52] BW-MRCCSD [52] Expt. [52]
SUMRCC IIMS-SUMRCC QFMRCC CCSD [55]

cc-pVDZ 1a1 ! 4a1 537.43 537.70 537.50 538.40 537.62 537.56 534.0
1a1 ! 2b1 539.33 539.33 539.42 540.21 539.55 539.49 535.9

cc-pcVDZ 1a1 ! 4a1 536.58 536.86 536.66 537.65 - -
1a1 ! 2b1 538.50 538.50 538.58 539.44 - -

aug-cc-pcVDZ 1a1 ! 4a1 536.24 536.61 536.24 537.55 - -
1a1 ! 2b1 538.05 538.05 538.05 539.35 - -

cc-pVTZ 1a1 ! 4a1 534.15 534.40 534.15 535.34 534.30 534.26
1a1 ! 2b1 536.05 536.05 536.05 537.13 536.20 536.15

Sadlej-pVTZ 1a1 ! 4a1 536.50 536.85 536.50 537.92 536.56 536.47
1a1 ! 2b1 538.27 538.27 538.27 539.60 538.34 538.35

Geometry: R (O-H) = 0.9772 Å ⇥ H-O-H = 104.52
Energies are in eV

Table 3.6: Adiabatic Core Excitation Energies for N2

Basis Excitation � UGA- UGA- EOM- Mk-MRCCSD [52] BW-MRCCSD [52] Expt. [52]
SUMRCC QFMRCC CCSD [55]

6-311G** 1⌃u ! 1⇧g 402.53 402.48 402.20 402.37 402.52 401.2
1⌃g ! 1⇧g 402.58 402.53 402.26 402.42 402.57 400.0

cc-pVDZ 1⌃u ! 1⇧g 407.67 404.75 404.38 - - (1.8-2 eV
1⌃g ! 1⇧g 404.83 404.80 404.43 - - resolution)

cc-pVTZ 1⌃u ! 1⇧g 401.82 401.79 401.62 401.81 401.66
1⌃g ! 1⇧g 401.88 401.84 401.68 401.86 401.72

Sadlej-pVTZ 1⌃u ! 1⇧g 404.66 404.63 404.05 - -
1⌃g ! 1⇧g 404.73 404.68 xxx - -

Geometry: R (N-N) = 2.068 a. u.
Energies are in eV
xxx: Did not converge

Table 3.7: Diabatic Core Excitation Energies for CH4

Basis Excitation �UGA-SUMRCC SAC-CI (R) [56] Expt. [56]
cc-pCVTZ C 1s ! LUMO(A1) 287.80 288.50 287.99

Geometry of G.S.: R (C-H) = 1.087Å
Geometry of Excited State.: R (C-H) = 1.032 Å
Energies are in eV
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3.4.3 Scalar Relativistic E↵ects on Core Electron Ionization

In the next subsection, the e↵ect of scalar relativistic e↵ects using the spin-free Dirac-

Hartree-Fock Hamiltonian is studied on the molecules: H2O, H2S, H2Se, NH3 and

PH3. In all cases we have presented the relevant experimental values and the compu-

tations have been performed at the experimental geometries which are tabulated in

Table 3.9. In the subsequent molecules in the two series the spin-orbit e↵ects grow in

magnitude and we cannot expect to treat it with equal facility in our current frame-

work. We have selected large basis sets with core correlation functions in order to

provide a good description of the core relaxation e↵ects. For the relativistic compu-

tations we have used uncontracted basis sets or the dyall.cv3z basis of the DIRAC

program package [58] as is the convention but for the non-relativistic computations

we continue to use the corresponding contracted basis sets.

The numbers indicate two obvious trends: first, the IPs including scalar relativistic

e↵ects are closer to the experimental values and as we go down the group in the series

selected by us, the contribution of the relativistic e↵ect increases. What is somewhat

surprising is that even the 1s electron of a molecule as light as water shows significant

relativistic e↵ect of the order of tenths of an eV.

Table 3.8: Ionization energies of the 1s electron

Molecule Basis NR Orbitals 4c-DHF Orbitals Experiment
H2O cc-pCVTZ 539.38 539.84 539.78a

cc-pCVQZ 539.33 539.74
H2S cc-pCVDZ 2473.90 2482.42 2478.91b

cc-pCVDZ (u) 2475.78 2486.49 2478.32c

cc-pCVTZ 2471.57 2479.86
cc-pCVTZ (u) 2472.24 2480.64

H2Se dyall.c3v - 12692.29 12657.8±0.7d

NH3 dyall.cv3z - 405.5735543 405.6e

cc-pCVTZ 405.2212503 -
PH3 dyall.cv3z - 2153.715676 2150.88f

cc-pCVTZ 2146.869621 - 2150.5g

Atomic core ionization value
All values are in eV

Ref. a[59]; Ref. b[60]; Ref. c[61]; Ref. d[62]; Ref. e[63]; Ref. f[64]; Ref. g[63]

Table 3.9: Geometries of molecules with heavy atom, A

A-H H-A-H
H2O 0.9772 au 104.52
H2S 2.5251 au 92.06
H2Se 1.4567 Å 91
NH3 1.3366 Å 92.06
PH3 2.674 au 93.3
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4.1 Introduction

The interaction of molecules with electric and magnetic fields lies at the heart of

interpreting their behavior under external perturbation such as irradiation by electro-

magnetic radiation. For ab initio quantum mechanical methods, two approaches are

available for computation of molecular properties: numerical di↵erentiation using the

finite field technique and the method of analytic gradients. Several extensive reviews

are available [1, 2, 3] and we do not go into a detailed discussion of all the tech-

niques. A brief background is provided in the paragraphs below to elucidate better

our developments in the sections to follow.

A perturbative expansion, as shown in Eq, 4.1, of the energy of a molecular state

yields the molecular properties as the coe�cients accompanying each term of the

expansion in the field, X.

E(X) = E(0) + E(1)X +
1

2
E(2)X2 + ... (4.1)

The molecular property is associated with the coe�cients of X at each order of per-

turbation. For static perturbations such as constant electric and magnetic fields or

nuclear geometries, the coe�cients can be shown to be related to the derivatives of

the energy through a Taylor expansion of the energy about the zero-field situation as

shown in Eq. 4.2.

E(X) = E(0) +
@E

@X

���
X=0

X +
1

2

@2E

@X2

���
X=0

X2 + ... (4.2)

and yield time independent properties. For example, for electric properties, the defini-

tions of permanent dipole moment µ and polarizability ↵ are related to the derivatives

of the energy with respect to the electric field, ", as follows:

µ = �@E
@"

���
"=0

(4.3)

↵ = �1

2

@2E

@"2

���
"=0

(4.4)

The electronic Hamiltonian for a molecular system perturbed by an external field

is a function of two sets of distinct parameters: external parameters, X, such as

electric/magnetic field or the geometry by virtue of the BO approximation and internal

wave-function parameters, �, which include the MO coe�cients and the parameters

of the wave operator, for example the cluster amplitudes of CC or the coe�cients of

CI. The wave-function parameters, �, also have an implicit dependence on X which

may be denoted by �(X). Considering that the wave-function parameters have been

predetermined as �x by some method for a given value of X, the total derivative of E
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can be denoted as:

�E(X,�(X))

�X
= E(0,�x) +

@E(X,�)

@�

���
�=�

x

@�

@X

���
�=�

x

(4.5)

For a variational wave-function optimized for every X, @E
@�

= 0 for all values of X. Thus,

the total derivative and partial derivative become identical and the wave-function

response, @�
@X

is not needed for computing the properties at first order. This is in

accordance with the familiar 2n+1 rule of perturbation theory. Of course, one must

ensure that one is dealing with the response of the parameters with respect to which

the wave-function has been made stationary. For example, the CI wave-function is

stationary with respect to the CI coe�cients but not the orbital rotation parameters

which have been optimized at the SCF level. Thus, for us to consider the CI wave-

function as variational, the orbitals will also have to be optimized in the presence of

the perturbation and correlation. We would thus end-up with a large-scale CAS-SCF

wave-function which is of course fully variational. CC theories are also non-variational

and special techniques have been developed to make them conform to the variational

conditions which we shall discuss in a moment.

Since the energy of the molecule can be expressed as an expectation value of the

Hamiltonian of the system:

E(X) = h |H(X) | i (4.6)

some further simplifications for obtaining the derivatives of the energy with respect

to X may be engineered. For exact wave-functions, the Hellmann-Feynmann theorem

states that:
�E(X)

�X
= h | �H(X)

�X
| i . (4.7)

Unfortunately, the wave-functions we deal with in this thesis are of the coupled cluster

form. In addition to being non-variational, they are neither exact nor are the left

and right eigenvectors of the Schrödinger Hamiltonian adjoints of each other. It was

then envisaged that instead of an expectation value, if one represented the energy

as the projection of the Schrödinger equation for the approximate wave-function by

a suitable bra function, one may not only calculate the derivatives of the energy as

a matrix element of the derivatives of the Hamiltonian but also restore the familiar

2n+1 rule of variational wave-functions to non-variational wave-functions. This was

called the method of the Quasi-Energy Lagrangian and is a very powerful technique

for formulating and computing properties from arbitrary wave-functions. The energy

from any non-variational wave-function may be made stationary with respect to a

set of suitably chosen Lagrange’s multipliers, say, �. It can be shown that the �s so

determined actually obey a more stringent 2n+2 rule further enhancing the e�cacy
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and beauty of the Lagrangian formulation of analytic gradients, as it is commonly

called.

For an arbitrary non-variational wave-function,  , parametrized by some set of

variables, {ti}, let us denote the working equations for ti as:

Ri(t) = 0 (4.8)

and the energy as E(t). The Lagrangian, L, may be constructed to give back the

energy of the system when the tis have their optimized values by using Eq. 4.8 as

a constraint with corresponding Lagrange’s undetermined multipliers, �i. Additional

constraints may also be imposed as required.

L = E(t) +
X

j

�jRj(t) (4.9)

The equations for obtaining ti are obtained by making the L stationary with respect

to �i and the equations for obtaining �i are obtained by making the L stationary with

respect to ti. The �is thus satisfy the equation:

�E(t)

�ti
+
X

j

�j
�Rj(t)

�ti
= 0 (4.10)

and Eq. 4.8 becomes the stationarity condition for �i. Since the functional L in

Eq. 4.8 is sought to be made stationary with respect to both {�i} and {ti}, so as to

yield the desired energy at the stationary point, we may call this strategy as using a

bivariational principle. It is interesting to note that the Lagrangian approach gives

the Hylleraas functional when applied to a perturbation expression and may also be

generalized to time-dependent properties.

This bivariational approach is particularly useful for coupled cluster theories where

the Lagrange’s multipliers may be identified as the amplitudes of the cluster operator

Ansatz for the bra function taken as:

h | = h�| (1 + ⇤)e�T (4.11)

where ⇤ is a de-excitation operator having amplitude, � and the Ts are the usual

excitation operators, � being the HF function. The Lagrangian for the single reference

coupled cluster theory is thus simply:

L = h�| (1 + ⇤)e�THeT |�i (4.12)

= ECC +
X

l

h�|⇤l(e
�THeT )l |�i (4.13)
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where ‘l’ is an excited function index. A perturbative expansion of the Lagrangian

allows us to determine the expressions for the molecular properties at each order.

In this chapter we present the analytic gradient formulation of the single CSF limit

of UGA-SUMRCC which has been described in Chaps. 2 and 3. We call this theory

UGA-OSCC. We also use the finite field technique to compute properties of some

small molecules under a static electric field viz. dipole moment and polarizability.

The strength of this theory lies in that it can address non-singlet molecular states

at the coupled-cluster level providing a spin-adapted starting function for computing

properties related to external perturbations. A correct description of the zeroth order

function is expected to translate into a higher accuracy for computed properties even

if the perturbation breaks the spin-scalar nature of the Hamiltonian. The UGA-OSCC

theory uses a normal ordered exponential ansatz where the cluster operators are uni-

tary group generators and the normal ordering is with respect to a suitable closed shell

vacuum designed to ensure commuting T-operators even when they involve destruc-

tion of partially occupied orbitals. The working equations for this formulation are

projection equations with the occurrence of quasi-diagonal reduced density matrices

(RDM) of the model functions. This di↵erence adds to the complexity of the gradient

formulation making it more than a routine exercise. Operators of the left eigenvector,

1 +⇤, of the Schrödinger equation, already occurs in the projection equations for the

T-amplitudes. Since certain truncations are operationally imposed, the terms in the

equations for ⇤ and subsequently the perturbed OSCC densities must be compatible.

Moreover, the ranks of the RDMs involved increases with increase in the number of

active electrons and some reasonable truncations must be e↵ected to make the theory

implementationally viable.

4.2 The Lagrangian

The working equations for the cluster amplitudes in UGA-OSCC are as follows:

h�l
µ|{Hµ}|�µi � h�l

µ|{eTµWµµ}|�µi = 0 (4.14)
X

n

h�l
µ|{Gµ}|�µi = 0 (4.15)

and,

Hµ = HeTµ (4.16)

Wµµ = [Hµ]µµ (4.17)

Gµ = Hµ � eTµWµµ, (4.18)
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The energy expression is given by:

"µ = (Heff )µµ = h�µ|{Hµ}|�µi = Ecore + h�µ|{Wµµ}|�µi (4.19)

The index µ is carried to keep in mind that �µ is an open-shell configuration state

function (CSF) and the normal ordering denoted by {...}, for the Tµs is with respect

to the largest common closed shell part of the �µs. "µ, thus, not only involves the

0-body part of Hµ but also the H
1b
µ cl

, H
2b
µ cl

, ..., H
nb

µ cl
depending upon the number of

active orbitals, na, in �µ. For a single CSF, these active orbitals can be chosen to be

only the singly occupied ones by suitable choice of vacuum for normal ordering.

A Lagrangian which faithfully represents Eqns. (4.14) and (4.19) can be con-

structed as follows.

Lµ = "µ +
X

m

h�m
µ |{Hµ}|�µi �

X

m

h�m
µ |{eTµWµµ}|�µi

= h�µ|{Hµ}|�µi| {z }
1

+
X

m

h�µ|⇤µ
m[{Hµ}]mµ |�µi

| {z }
2

�
X

m

h�µ|⇤µ
m[{eTµWµµ}]mµ |�µi

| {z }
3

(4.20)

The ⇤µ
l = �µl E

µ
l are de-excitation operators whose amplitudes, �µl , may be identified

with the Lagrangian multipliers for the equations defining the cluster amplitudes,

T l
µ = tlµE

l
µ. In a simplified form, we can write the Lagrangian as:

Lµ = h�µ|(1 + ⇤µ){Gµ}|�µi (4.21)

4.3 The Equations Determining the Set {�µl }

As customary, the equations determining, �µl , may be obtained by di↵erentiating Lµ

with tlµ. The di↵erentiation of the Terms 1 and 2 are similar to that for single reference

coupled cluster (SRCC) theory. Term 3 is very di↵erent in that the tlµs occur in two

places namely contracted to Wµµ and within Wµµ. The di↵erentiation of Term 3 will

thus result in two terms, which we call Terms 3A and 3B respectively.

Term 3A =
X

m

h�µ|⇤µ
m[{El

µe
T
µWµµ}]mµ |�µi (4.22)

Term 3B =
X

m

h�µ|⇤µ
m[{eTµ [HeTµEl

µ]µµ}]mµ |�µi (4.23)

Before we embark on the explicit terms to be computed, we note the major dif-

ferences of this gradient formulation with other coupled cluster gradient formulations
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be it single reference or multi-reference. The most significant di↵erence is that the

equations for the T-amplitudes are not amplitude equations but projection equations.

Thus, Gµs of several ranks, n, (see Eq. (4.15)) contribute to an equation for a cluster

amplitude and not all of them correspond to a t-amplitude. Thus, on convergence

of the T equations, linear combinations of the Gµs and not individual Gµs are zero.

Moreover, the projection equations involve matrix elements between CSFs and not

determinants. Thus, the Lagrangian for UGA-OSCC involves reduced density matri-

ces (RDM), �µµ, in addition to H, Tµ and ⇤µ. This implies that with an increase in

the number of active orbitals, the possible ranks of the RDMs, the Gµs and hence,

number of possible terms in the Lagrangian would keep on increasing. For practical

purposes, some truncation of the ranks of the RDMs to be used must be employed

and we must be careful to maintain a correspondence between the terms included in

the T equations, those in the ⇤ equations and subsequently, those in the ⇤µeTµ com-

posites (ie. the so-called CC perturbed densities) in view of the truncation. While

determining the terms contributing to the equations for �, all possible de-excitation

looking terms arising from the di↵erentiated terms of the L (removing the operator

of T l
µ, ie. E

l
µ as well) are constructed and then a re-projection by El

µ from the right is

carried out. We treat the di↵erentiation of the eTµWµµ term di↵erently from the HeTµ

term. Since we have gone quite some distance towards the numerical implementation

of the analytic gradient method for the UGA-based MRCCs, we have discussed the

technical details of this procedure separately in Sec. 5.2.8 of Chap. 5. Since there are

no numbers yet from the code, we are presenting results using numerical gradients in

Sec. 4.4 of this chapter.

4.4 Numerical Gradients of UGA-OSCC

To indicate the expected accuracy of our gradient formulation we present here the

electric properties of some open-shell molecules calculated by means of the technique

of numerical gradients. We have used five-point numerical gradients using electric

fields 0.000, ±0.001 and ±0.002. We have corroborated the results by fitting a fourth

degree polynomial to the data as well. We find that while dipole moments computed

using fields of 0.0000, ±0.0001 and ±0.0002 and 0.000, ±0.001 and ±0.002 agree upto

10�3au, the polarizabilities are much better reproduced with the latter range of fields.

We have thus chosen this range of electric fields for our computations. The electric

field has been applied along the z-axis which is selected as the bonding axis for CN,

CH and SiH radicals such that the cylindrical symmetry of these linear molecules is

not broken. For NO field along x, y and z-axes have been employed to determine the

diagonal elements of the polarizability tensor for NO and thereby obtain the average

value. Fields in the x and y directions break the symmetry of the molecule and result



118 Chapter 4

in a mixing of the model functions which are otherwise orthogonal by symmetry. The

degeneracy of the ⇡ orbitals is also broken by the electric field. The results indicate

that our theory closely mirrors the accuracy of UGA-CCSD of Li and Paldus [4].

Table 4.1: Dipole moment and polarizability of the CN radical in various
basis sets computed using numerical gradients of UGA-OSCC

Basis µ [u] µ [r] ↵zz [u] ↵zz [r]
cc-pVDZ 0.542 0.547 26.57 26.7475

aug-cc-PVTZ 0.611 0.606 27.86 28.3712
Sadlej 0.613 0.613 30.48 30.4819
ANO 0.611 0.610 34.34 35.0662
Expt 0.57

Geometry: C-N = 2.21512 au

Table 4.2: Dipole moments of CH, SiH and NO using Sadlej-pVTZ basis

µ CH(2⇧) SiH(2⇧) NO(2⇧) NO(2⌃)
UGA-OSCC [u] 0.537 0.039 0.060 0.702
UGA-OSCC [r] 0.538 0.049 -0.056 0.696

CVA-FS-MRCCSD [5] 0.543 0.063 -0.073 0.674
FS-MRCCSD (↵) [5] 0.520 0.046 -0.041 0.698

UGA-CCSD [6] 0.535 0.037
Expt. 0.574 [7] 0.023

Geometry: C-H = 2.11648 au; Si-H = 2.84 au; N-O = 2.17464 au
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Table 4.3: Polarizabilities of CH, SiH and NO using Sadlej-pVTZ basis

↵zz CH(2⇧) SiH(2⇧) NO(2⇧) NO(2⌃)
UGA-OSCC [u] 16.56 37.22 14.50 244.20
UGA-OSCC [r] 16.64 38.44 15.33 241.20

CVA-FS-MRCCSD [5] 15.86 37.44 14.72 243.99
FS-MRCCSD (↵) [5] 16.20 38.30 240.90

UGA-CCSD [6] 16.22 38.81

Geometry: C-H = 2.11648 au; Si-H = 2.84 au; N-O = 2.17464 au

Table 4.4: Diagonal elements of the polarizability tensor of the NO radical
computed in the Sadlej-pVTZ basis

↵zz ↵xx ↵yy h↵i
UGA-OSCC 15.33 9.21 10.10 11.55

ROHF-CCSD (↵) 15.29 9.1 10.08 11.49
ROHF-CCSD(T) (↵) 15.34 9.22 10.21 11.59
CVA-FSMRCCSD [5] 14.72 8.9 9.96 11.19

Refractivity Measurement 15.24 9.67 9.67 11.53
Expt [8, 9] 11.5180.013

Geometry: N-O = 2.17464 au
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5.1 The Set of MRCC Programs

The two theories discussed in Chapter 2, the UGA-SUMRCC and UGA-QFMRCC,

are integrated in the MRCC program package developed as a part of this thesis project.

The package also has the potential for UGA-SSMRCC runs. The code is designed to

handle any user-specified model space whether complete or incomplete. The code

takes as input one and two-body Hamiltonian integrals in molecular orbital (MO)

basis. For this, the code is interfaced to GAMESS-US, DIRAC and LONDON. The

complete model space one-particle RDMs are always obtained non-interactively from

the GUGA module of GAMESS-US through a simple file I/O. The MRCC program

package can of course also run SRCC computations for which gradient modules are

also available for computation of up to second order properties but not molecular

geometry optimizations yet. The gradient section of the code for open-shells is not

fully functional yet and we only discuss matters of principle in this regard.

In Sec. 5.2 we discuss how the non-trivial parts of the programs have been handled

and in Sec. 5.3, we give a brief idea of the computational cost and scaling of our

theories.

5.2 Computational Organization

The codes take inputs from two files called mrcc.inp and modelfn.inp. The first file

contains basic information such as number of basis functions, number of inactive and

active orbitals, number of model functions, etc. and control information such as

which theory to run, to compute properties or not, convergence thresholds, printing

thresholds, etc. The second file contains the user-defined list of model functions

(CSF) in terms of the occupancy of the active orbitals. If two CSFs have the same

occupancy but di↵erent spin-coupling schemes, they have to be repeated in the input

file. The CSF occupancies are tallied with the diagonal elements of the 1p-RDMs

from GUGA computations to obtain the required diagonal and transition RDMs.

Full sample input files are provided in Appendix G. In addition MO integral files

generated from GAMESS, DIRAC or LONDON must be supplied. MCSCF-based

UGA-SSMRCC can only run in conjunction with GAMESS and the files required are

somewhat di↵erent which must be correctly entered in the input files.

With this information, the code constructs the RDMs required (Sec. 5.2.1), car-

ries out the construction of the G-blocks using an automatic sequence optimizer and

tensor contraction engine for multiple tensor contractions (Sec. 5.2.2), constructs the

residues for the working equations of the cluster operator (Sec. 5.2.5) and updates

the manifold of cluster operators dictated by the theory (Secs. 5.2.6 and 5.2.7). The

special considerations required for handling IMS and the modifications for the imple-
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mentation of the UGA-QFMRCC theory have been discussed in Sec. 5.2.3 and Sec.

5.2.4 respectively.

5.2.1 Construction of IMS Density Matrices for mh-np Valence Sectors

The GUGA module of GAMESS constructs only elements of the 1p transition density

matrices or RDMs, �µ⌫vu, between two Gel’fand adapted CSFs, �µ and �⌫ .

�µ⌫
v
u = h�⌫ |Ev

u |�µi (5.1)

The doubly occupied core function is taken as the vacuum for this construction. How-

ever, for our purposes we may choose a larger vacuum and treat the model functions as

belonging to a hole or mixed hole-particle sector. The RDMs must then be suitably

modified. Specifically, the normal ordering of the generators of the unitary group,

Ev
u, must be changed. For example, for our computations using the 1h-1p sector for

excited states, the most natural choice of vacuum is the HF function of the ground

state with N electrons. This necessitates a shift of the normal ordering of Ev
u from

being with respect to the core function with N-2 electrons to the HF function with N

electrons. The corresponding elements of the RDMs, �̄µ⌫vu, can be easily redefined by

Eq. 5.2.

�̄µ⌫
v
u = �µ⌫

v
u � �v

u�µ⌫ (5.2)

where, �v
u is an element of the density matrix of the vacuum and the diagonal elements

have a value of 2 for occupied orbitals and 0 for unoccupied orbitals in the spin-free

case. The two-body � for the vacuum is also constructed using Eq. 5.3, as it is

required for the construction of the two-body RDMs featuring in our UGA-MRCC

equations.

�pr
qs = �p

q�
r
s � �qr�

p
s (5.3)

The elements of the 1p RDM with our choice of vacuum in an IMS, �̃µ⌫vu, are

generated from the CSF occupancies provided in the input file, modelfn.inp for the

1h-1p case. Alternatively, for larger model spaces, the user-defined CSFs are identified

in the list of CSFs generated by GAMESS and a subset of �̄µ⌫vu in the CAS is defined

as �̃µ⌫vu in the IMS. The construction of the elements of the two-body RDMs in the

IMS involves the use of an identity projector and hence requires both �̄µ⌫vu and �̃µ⌫vu
(Eq. 5.4).

�̃µ⌫
pr
qs = �(�rq�

1

2
�r
q)�̃µ⌫

p
s+

1

2
�p
s�̃µ⌫

r
q�((�rq�

1

2
�r
q)�

p
s+�pr

qs��p
q�

r
s+

1

2
�p
s�

r
q)�µ⌫+

X

�

�̄µ�
p
q �̄�⌫

r
s

(5.4)

The �̃ and �̃ matrices are finally used in our projection equations and Heff matrix. By

suitably defining the vacuum density �, we can in principle use any choice of vacuum
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in our code.

5.2.2 Automatic Sequence Optimizer and Tensor Contraction Engine

for Multiple Tensor Contractions

The expressions for the construction of the direct term in the G-blocks have been

obtained using an Automatic Expression Generator (AEG) written in Python [1]. A

Tensor Contraction Engine (TCE) has been developed by us in collaboration with

Dr. Simen Reine, CTCC, Oslo, the details of which will appear in a forthcoming

publication along with timing studies but we delineate the salient principles here for

completeness. An automatic code generator (ACG) [1] acts as a translator between

the AEG and the TCE.

Our MRCC codes are coded for LCCSD, CCD and CCSD runs. The last two

options involve a sequence of contractions involving up to five tensors of varying

dimensions to be contracted. The TCE determines the sequence in which the tensors

are to be contracted for optimal utilization of floating point operations (FLOPs) and

memory resources. The TCE counts the number of FLOPs required for all the possible

sequences of contractions and chooses the best path. This criteria encompasses both

operation and memory considerations. Since, this determination is carried out at

run-time, this TCE is also capable of taking into consideration the di↵erences in

the optimal sequence for di↵erent basis set sizes and number of inactive hole, active

and inactive virtual orbitals. Once the sequence is selected, the tensors are suitably

permuted to make them amenable to contraction by the DGEMM routines from the

LAPACK library. Care is taken to optimally carry out the permutations which are

likely to become bottlenecks in the code if done wrong. The routines have been

designed to allow external specification of the orbital ranges of the output array. This

is specially relevant for optimal memory usage in our case as three and higher body

G-blocks feature in our projection equations but not all at once. We might mention

that the largest dimension of the three-body G-blocks, for instance, is n2
actn

2
hn

2
p where

nact is the number of active orbitals, nh is the number of inactive holes and np is the

number of inactive particle orbitals.

5.2.3 Handling Heff and W⌫µ for IMS

To incorporate the lack of IN of ⌦µ in the definition of Heff , we proceed as mentioned

in Eq. 2.53 at each step of iteration. Using the expression for Gµ in Eq. 2.26, at any
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iterative step (i+1) we can write:

h��|[{eTµ}{H(i)
µ }]cl|�µi � h��|

X

⌫

[{eTµ}{eT⌫

�T
µ(eT⌫ � 1)W (i)

⌫µ }]cl

+[{eTµ}{(eT⌫

�T
µ � 1)W (i)

⌫µ }]cl|�µi = H(i+1)
eff,�µ (5.5)

where,

W (i)
⌫µ |�µi = |�⌫ih�⌫ |H(i)

eff |�µi (5.6)

We start the iteration of Heff with the following expression:

H(0)
eff,�µ = H

(0)
�µ = H�µ (5.7)

Here an important point to notice is that, in each step of iteration, we have chosen

our Heff in such a manner that it corresponds to the true solution for the residue

2.28:

Rcl,�µ = 0 (5.8)

Subsequently, we will diagonalize Heff to get the energies for all the ‘k’ states.

To implement the su�ciency variant of the parent UGA-SUMRCC, we have sepa-

rated out the blocks corresponding to linearly dependent operators. Then the residues

for each of the operators are computed and the iteration is performed until the residue

become zero. The algorithm for Heff for the su�ciency variant is exactly the same

as that for the parent UGA-SUMRCC.

5.2.4 Special Considerations for UGA-QFMRCC

For UGA-QFMRCC, we need to construct all possible H = HeT (may be three

body or higher) followed by a construction of HeSµ . These connected composites

comprise the G blocks which feature in the working equations determining Sµ. Heff

is also constructed from this composite. Sµs are the amplitudes embodying di↵erential

correlation for the CSF, �µ. Instead of a step-wise construction, which appears to be

the most obvious, in our implementation our goal has been to generate all diagrams

possible in HeSµ without a prior construction of all possible H. We have achieved

this in the following manner:

1. Carry out an SRCCSD computation and write the closed shell ground state Ts

to file and also store the correlation energy, Ecorr for each model function.

2. Read in the Ts in an array defined for the target sector, ie. in generalized

hole-particle dimensions with entries in valid locations and the rest zero



126 Chapter 5

3. Define a composite array called S 0
µ containing T + Sµ

4. Evaluate all possible HeS
0
µ composites. This involves the same set of diagrams

as the HeTµ composites used in UGA-SUMRCC. The intermediate three and

higher body H̄s are also generated implicitly.

5. The IP-like, EA-like and EE-like portions from the G-blocks are picked up as

the W⌫µs and suitably multiplied with density matrices to give contributions to

Heff . Additionally, closed terms involving the Hamiltonian and both T and Sµs

or only Sµ contribute to Heff , viz.

(FS1µ), (V S2µ), (V S2
1µ), (V T 1S1µ)

However, to reduce computation, we do not compute these terms individually

but rather construct (FS 0
1µ),(V S 0

2µ), (V S 0
1µ

2) and then drop the Ecorr computed

in Step (1) from Heff to get Heff at each iteration step.

6. The algorithm for obtaining the correct Heff in an IMS is exactly the same as

for the parent UGA-SUMRCC.

7. Diagonalization of the final Heff yields excitation energies directly.

5.2.5 Projection Equations

To construct the residuals, Rl
µ, along the lines of Eq. 2.27 we need to evaluate the

projection of the operators of the cluster operators on all possible G-blocks. This

amounts to evaluating a weighted sum of the amplitudes of the G-blocks, g, for each

cluster operator where the weights are the elements of the RDMs for a given �µ (viz.

Eq. 2.72). Since, the cluster operators are not normalized to unity, we need to carry

out a normalization of Rl
µ to prevent an imbalance between the updates of the various

cluster amplitudes (see Sec. 5.2.7). While this has no direct e↵ect on the theoretical

requirements and does not a↵ect the final converged solution, it is found to play a

vital role in the convergence behavior of the equations. In fact, in most cases, we were

unable to obtain convergence without normalization.

The constraint of using specific combinations of T-operators (viz. Tables 2.1 and

2.2) in order to ensure a LIN excitation space is also implemented at this juncture.

For linearly dependent operators the residuals are constrained to be properly signed

multiples of each other such that the cluster operators behave as if they have a common

amplitude associated with the proper combination of elementary operators. This is

just another way of saying that we actually project with a given combination of

elementary operators.

In this thesis we have handled only one and two-body RDMs in the projection

equations and constructing and storing them is computationally better. However, one

can imagine that the RDMs would grow in rank and size very quickly for larger active
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spaces, making storage a bottleneck. In that case, one can use the decomposition

formula of a high rank RDM explicitly in the projection equations.

5.2.6 Discarding Gs not Corresponding to Ts

As discussed in Chaps. 2 and 3, not all of the G-blocks we construct contribute

individually to cluster amplitudes. The residuals mentioned in Sec. 5.2.5 are not

separate arrays but overwritten G-block arrays. This makes it necessary to remove the

quantities that do not correspond to Ts although they contribute to the construction

of residuals via the projection equations. This step could have been clubbed with

the selective generation of residuals but we have chosen to keep this separate to

avoid unnecessary occupancy-based checks in the projection equations and improve

modularity.

5.2.7 Convergence Scheme

A Jacobi iteration scheme is employed to iterate the cluster amplitudes. The residuals,

Rl
µ, are used to update the amplitudes of T by Eq. 5.9.

T l
µ
(i+1) = T l

µ
(i) �

Rl
µ
(i)

Dl
µ

(5.9)

where the exact structure of the denominator,Dl
µ, is immaterial so long as it provides a

balanced updating of the cluster amplitudes. In our code we have chosen the following

expressions for the denominators of the one and two-body cluster operators, TA
I and

TAB
IJ , where I,J,etc. and A,B,etc. are generic indices for occupied and unoccupied

orbitals respectively in �µ and ‘u’ denotes the singly occupied active orbitals:

DA
I = "A � "I �

X

u

vAu
Au +

X

u

vIuIu (5.10)

DAB
IJ = "A + "B � "I � "J �

X

u

vAu
Au �

X

u

vBu
Bu +

X

u

vIuIu +
X

u

vJuJu (5.11)

The orbital energies, ", are obtained from the HF mean-field computation for the

vacuum chosen.

For accelerating the convergence of the cluster amplitudes we employ the DIIS

extrapolation method. Our implementation has two possible schemes for DIIS. The

first involves a user-specified fixed size of the iterative sub-space, ndiis, and has pro-

vision for selecting the intervals, nskip, at which the extrapolation will be carried out.

Usually, one selects nskip > ndiis leading to non-overlapping iterative sub-spaces.

The second scheme uses a cumulative iterative sub-space for iteration and the user

may specify the minimum (diismin) and the maximum (diismax ) number of vectors
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to be kept in the iterative sub-space. There is thus always an overlap between the

vector spaces used for two consecutive extrapolations. Both schemes are found to

perform similarly in most cases although sometimes one yields significantly improved

convergence over the other. No clear trends were noted.

The convergence check has two levels: first, the average of the absolute values

of the residuals for all the non-zero Ts is brought below the set threshold and then,

the absolute value of any individual residuals which are still above the threshold are

added to the error measure, ✏. The cluster amplitudes are iterated till ✏ is below the

user-defined threshold. In the results presented in this thesis a convergence threshold

of 10�8 was mostly used.

5.2.8 Equations for Obtaining �

Moving on, let us take the example of an N electron system where there is only 1

active electron and the vacuum chosen has (N-1) electrons. Thus, the target sector

is a ‘1-particle’ sector. The RDM involved is only of rank 1 and can be explicitly

denoted as �µ
u
u. The Gµs are of maximum rank n=3. The index µ on W has been

suppressed for simplicity while the diagonality of the RDMs has not been assumed to

allow us to easily extend the implementation to higher target sectors. We denote the

term obtained after di↵erentiation of Lµ with tAI as Rµ
I
A where I can be inactive hole

orbitals (i,j,...) or active orbitals (u,v,w,...) and A can be inactive particle orbitals

(a,b,...) or active orbitals in �µ. Primed indices, i’,j’,..,etc., indicate generalized holes

(inactive holes+actives) and, a’,b’,...,etc., are generalized particles (actives+inactive

particles). The terms in the di↵erentiated Lµ coming from Term 3A can be enlisted

below:

Rµ
w
a0 ( �ua0E

a0

wW
w
v �µ

u
v 8 a0, w

Rµ
wj0

a0b0 ( �uj
0

a0b0E
a0b0

wj0 W
w
v �µ

u
v 8 a0, b0, w, j0

Rµ
wj0

a0b0 ( �j
0u
a0b0E

a0b0

wj0 W
w
v �µ

u
v 8 a0, b0, w, j0

Rµ
wi0

ua0 ( �i
0

a0E
a0u
i0wW

w
v �µ

u
v 8 u, a0, w, i0

Rµ
wi0

a0u ( �i
0

a0E
ua0

i0wW
w
v �µ

u
v 8 a0, u, w, i0

These Rµs are thus, the quantities to be constructed for solving the equations for �µ.

For the di↵erentiation of Term 3B, it is simpler to think of the terms contributing

to the di↵erentiated composites de novo. Noting that we wish to generate composites

of the de-excitation type, ie. Rµ
I
As we follow 3 steps:

Step 1: The possible structures for the di↵erentiated Wµµs are constructed. See Fig.

5.2.8.

Step 2: The terms possible for generating {eTµWµµ} are constructed. Note that the
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Active particle orbital

Generalized particle
orbital

Active hole orbital

Generalized hole
orbital

Figure 5.1: Structures of the di↵erentiated Wµµ, removing the operator of
the Tµ as well.

Active particle
orbital
Generalized
particle orbital

Active hole
orbital
Generalized
hole orbital

Figure 5.2: Disconnected Structures of the T and di↵erentiated Wµµ.
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Tµs inside Wµµ in Term 3 are of two types: those which are solely connected to H

inside Wµµ and those which are connected to both H and ⇤µ. When those Tµs of the

second type which were the sole connectors to ⇤µ are di↵erentiated, the correspond-

ing terms contributing to Rµ
I
A look disconnected. Hence, such terms must also be

constructed. See Fig. 5.1.

Step 3: The ⇤µs are then contracted with the composites generated in Steps 1 and

2. It is necessary to be careful that the open lines coming from ⇤µ are only of the

active type as the di↵erentiated Tµ from inside Wµµ could only have been originally

connected to the ⇤µµ by active lines. The open inactive labels of Rµ
I
A can thus, come

only from the Hamiltonian from inside Wµµ.

The connected terms from the di↵erentiation of Term 3B are enlisted below:
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c0
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X
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�k
0w
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uk0 H̄
uj0
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Rµ
wj0

a0b0 (
X

u,c0

�wk0

c0d0T
d0c0

uk0 H̄
uj0

a0b0 8 a0, w, b0, j0

Rµ
wj0
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X

u,c0,k0
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c0T
c0w
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uj0
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uj0
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The terms are constructed by first generating (⇤µeTµ)µµ (called temp AA in the code)

and then contracting with the di↵erentiated Wµµ. Only the active to active scattering

of the (⇤µeTµ) composite is required since all inactive labels can only come from inside



Algorithm and Programmatic Organization 131

Wµµ. The Eqs. (5.12) can then be written simply as:

Rµ
w
a0 (

X

u

temp AA(w, u)H̄u
a0 8 a0, w

Rµ
wj0

a0b0 (
X

u

temp AA(w, u)H̄uj0

a0b0 8 a0, w, b0, j0

Since this is only a 1p sector the fully de-excitation looking di↵erentiated Wµµs can

contribute to the disconnected terms. Explicitly:

Rµ
i0v
wu ( temp AA(v, u)H̄ i0

w 8 w, u, i0, v

Rµ
i0j0v
wb0u ( temp AA(v, u)H̄ i0j0

wb0 8 w, b0, u, i0, j0, v

Once these Rµ
I
A are constructed they are projected from the right with the operators

EA
I of Tµ

A
I . Only the projections compatible with the terms in the equation for T-

amplitudes are carried out.

To construct the terms arising from terms I and II of L, some careful considerations

are required. If a vertex of Rµ
I
A comes entirely from ⇤µ, a right projection on it by

a one-body excitation operator is a spurious term since no T can be solely connected

with a ⇤. There is no such term in the one body part of Rµ
I
A (subroutine lamdiag 1b)

where a vertex comes entirely from lambda. The only possibility was ⇤2b � WPH

(WPH ⌘ HµPH) but by the solution of the T eq, WPH=0. There are two classes

of diagrams in lamdiag 2b. One where a vertex of the full block comes solely from

lambda (type A) and the other where both the vertices have at least one line coming

from HeTµ (type B). The subroutine lamdiag 2b A corresponds to the first class.

Only the component of Rµ
I
A, delL2 A, obtained from subroutine lamdiag 2b A is to

be used in projections where a one-body projection solely on one vertex occurs. This

projection must be restricted to the second vertex as the first vertex is the one which

comes solely from lambda (by choice).The subroutine lamdiag 2b B corresponds to

the second class of diagrams to give delL2 B. Both delL2 A and delL2 B are to be

used in all other projections.

For the three-body G blocks, some special consideration is required for the term

involving a disconnected L2 as no T can be entirely connected to it. We enforce this

by demanding that the vertices of L2 are not projected from the right. Thus, before

carrying out the projections, we have 5 types of Rµ
I
A:

delL1: One-body Rµ
I
A

delL2 A: Unsymmetrized G block containing diagrams where the first vertex (a ! i)

of (ab ! ij) comes solely from lambda

delL2 B: Symmetrized G block containing diagrams where each vertex has at least

one line coming from HeTµ
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delL3 1: Three-body Rµ
I
A where a two body projection from the right cannot be en-

tirely on the first two vertices of the G-block

The same subroutines for projection equations for the Tµs can be used for project-

ing the ⇤µs by passing the transpose of the ⇤ arrays to the subroutines. The iterative

procedure adopted for the equations for the ⇤µ is also the same as for the Tµs.

5.3 Computational Cost

The computational cost of UGA-SUMRCC at first glance is a multiple of the cost

of a CCSD computation, the prefactor being the number of model space functions.

The model space has a high scaling with number of active orbitals and electrons viz.

⇠ N ! for a CAS but being an e↵ective Hamiltonian theory, large model spaces are

anyhow unlikely to be feasible as a fallout of the intruder problem and this scaling is

not expected to create a bottleneck. What could be of concern is the involvement of

the three body G-blocks, the evaluation of which is the most expensive part of our

computation. This has a cost of 12 nact2 times a CCSD computation where ’nact’ is

the number of active orbitals and there are 12 possible three body structures for the G

blocks. The number of unknowns scale as N4
ghN

2
gp where gh (generalized hole) = No.

of occupied orbitals + No. of active orbitals and gp (generalized particle) = No. of

unoccupied orbitals + No. of active orbitals. Thus, at each iteration the scaling of the

computational cost with the number of basis functions, N, is dominated by the terms

containing the all-particle integrals, VPPPP in the expressions for the two-body and

three-body G-blocks. The computational cost of UGA-QFMRCC must be studied

stepwise. The first step is simply a CCSD calculation. The next step of determining

the Sµ amplitudes has the same cost as UGA-SUMRCC. The overall scaling behavior

of our UGA-QFMRCC is in fact of the same order as those in EIP or STEOM-CC

except that the STEOM-CC ignores the three-body excitation operators necessary for

equivalence, of physics incorporated, with our UGA-QFMRCC as mentioned in Sec.

3.2. This is one approximation among many which are open to us as well but due to

the compact µ-dependent representation of the cluster operators, it was not necessary

for us to try it. Since, these theories provide multiple roots without superfluous cost,

we believe that it is workable for small to medium molecules or correlation sensitive

parts of larger molecules in situations where accuracy takes precedence over cost.
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Summary and Future Outlook
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6.1 Summary

In this thesis we have introduced a simple and e�cient spin-free JM-like Ansatz to

formulate a spin-free SUMRCC theory called UGA-SUMRCC [1] for describing states

dominated by one particle, one hole, or hole-particle excited reference functions rel-

ative to a closed shell ground state and a corresponding theory for energy di↵er-

ences called UGA-QFMRCC [2]. Our spin-free formulations automatically lead to

wave-functions with definite spins without spin contamination. The functions in the

model space are CSFs, {�µ} rather than determinants and we choose them to span

the Gel’fand basis. The virtual functions, �l
µ are generated by the actions of ap-

propriate spin-free unitary generators, {El
µ} on �µ. These excitation operators are

non-commuting which makes the associated cluster operators non-commuting in gen-

eral, thereby making the expression for the direct term of the SUMRCC equations

non-terminating. We have thus chosen a normal-ordered Ansatz for the wave opera-

tor, ⌦µ = {eTµ} where the normal ordering is with respect to a closed shell reference

(vacuum state) to restore, operationally speaking, the commutativity of the cluster

operators. Since there are no Tµ � Tµ contractions in {eTµ}, for Tµs with valence

destruction operators, the powers of Tµ with these excitations would terminate when

the power of Tµ is such that all the valence occupancies in �µ are exhausted. This is

unlike the property of an ordinary exponential, eTµ , where the Tµ � Tµ contractions

allow the powers of Tµ to generate non-vanishing excitations out of �µ. Interestingly,

the loss of clustering resulting from this deviation from a full exponential Ansatz is

somewhat o↵set by the appearance of a so-called folded or coupling term which rein-

troduces a major portion of the T-T contracted terms. We have derived the working

equations for the cluster amplitudes and of the e↵ective Hamiltonian and proved the

size extensivity of the theory. The working equations involve spin-free RDMs and

lead to potentially disconnected amplitudes and hence, the proof of size-extensivity

has to not only involve the proof of connectivity of the equations but also indicate how

that translates into extensivity. In the specific equations used in this thesis we have

demonstrated that the extensivity is retained in spite of using the projection equations

which involve reduced density matrices (RDMs). The formalisms developed in this

thesis have been applied to excited and electron attached/detached states relative to

a closed shell ground state for some prototypical systems.

In our formulation and implementation of the UGA-SUMRCC and UGA-QFMRCC

for excitation energies (EE), the model functions chosen by us are incomplete. This

warrants the abandoning of the customary choice of intermediate normalization of the

wave operator, and we have thoroughly discussed the modifications necessary for the

formulation as well as the implementation.

In our most rigorous formulation there are no redundancies in the cluster ampli-
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tudes and we have discussed our specific choices for selecting the proper combinations

of cluster operators needed to span the singles-doubles excitation sub-space of the

set {Tµ} |�µi. Alongside this development, we have also explored the possibility of

using linearly dependent operators and providing equations for them via su�ciency

conditions. This leads to simplification of the structure of the working equations

but the results indicate that the performance is less uniform than the original rigor-

ous scheme. A third avenue we have explored is to use amplitude equations directly

whence the linear dependence of the excited functions does not play any significant

role. We find that the amplitude equations show a stable performance across di↵er-

ent molecular states but are deficient in terms of physical interactions included which

manifests as marginally larger errors than the rigorous scheme. The trends are similar

for UGA-SUMRCC and UGA-QFMRCC.

The most prominent strength of our theory appears to be the mechanism for or-

bital relaxation. We find that we are able to describe core electron ionization and

excitations which are accompanied by very strong orbital relaxations and correlation

relaxations in an accurate manner while using the orbitals of the corresponding closed

shell ground states. We have exploited this strength by applying our theory in this

domain. Moreover, to study the scalar relativistic e↵ects on the ionization of the 1s

core electrons of molecules containing medium heavy atoms, we have employed the

spin-free four component Dirac-Hartree-Fock Hamiltonian. We find that the relativis-

tic contribution to the ionization energy of the 1s electron increases with increasing

atomic weight as expected but the accuracy of our theories remains consistent.

We have also formulated the analytic gradients for the single CSF limit of our

UGA-SUMRCC theory called as UGA-OSCC theory and indicated the non-trivial

aspects of its implementation. Computation of electric properties of some radicals

via the use of numerical gradients with zero-field orbitals indicate that the analytic

gradients would also provide numbers of comparable accuracy at lower cost.

6.2 Future Outlook

Future developments of the theories developed in this thesis may be in several direc-

tions. A limitation of both the UGA-SUMRCC and the UGA-QFMRCC theories lies

in that they are e↵ective Hamiltonian theories and are thus prone to the problem of

encountering intruder states. One may wonder whether casting the coupled-cluster

equations in an e↵ective CI-like structure, as for example what was shown to be rather

e↵ective in the FS-MRCC theory via the Eigenvalue Independent Partitioning Tech-

nique [3] or the allied Intermediate Hamiltonian formalism [4, 5], could be a viable

way to achieve stability of the target energies even in the presence of intruders. Of

course, unlike in the FS-MRCC theory, the µ dependence of the cluster amplitudes
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would make the CI-like transcription somewhat more involved. We hope to carry out

such studies in future. We are also now proceeding to higher valence sectors which is a

fairly straightforward exercise if one adopts the method of amplitude equations. This

would enable us to treat excited states dominated by doubly excited configurations

which continue to be a challenge for linear response based approaches. The analytic

gradients of the UGA-OSCC theory also hold much promise which we did not numeri-

cally implement in the thesis. However, we will apply it to prototypical systems in the

very near future. An application of these theories to the computation of spin-sensitive

properties is also being envisaged, where the absence of spin-contamination in the ze-

roth order correlated wave-function may be expected to both enhance the accuracy of

the computed properties and to provide a compact formulation of the problem. One

can also improve the applicability of these theories to heavy atom containing molecules

wherein spin-orbit coupling e↵ects become relevant by considering the spin-orbit cou-

pling as a perturbation on the spin-free starting function. In conclusion, we may say

that the formulation of these theories have opened up several avenues of exploration

and we are continuing in our endeavors to study them as completely as possible and

improve them where necessary.
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Appendix 1

VUMRCC

Let us consider a partitioning of our N-electron problem into an Nc + Nv electron

problem where Nc is the number of core electrons which form a doubly filled common

part of all the model functions for all the valence-sectors and hence do not participate

in static correlation while Nv is the number of valence electrons sub-sets of which

when arranged in the active orbitals (nv in number) in di↵erent ways generate the

model functions for all the valence sectors. What do we mean by ”valence sector”

? The closed shell function containing Nc + Nv electrons may be called the (0,0)

valence sector. All functions containing Nc+(Nv � 1) electrons where an electron has

been removed from an ”active” orbital belong to the (1,0) valence sector, ie. (1-hole,

0-particle) valence sector. Similarly, all functions containing Nc + (Nv + 1) electrons

where an electron has been added to an ”active” orbital belong to the (0,1) valence

sector and so on. Starting from an Nc+Nv problem it is possible to find all correlated

functions having Nc electrons to Nc + Nv + 2 ⇤ nv electrons using the VU Ansatz

which includes our targeted Nc +Nv electron problem as the (1,1) valence sector. It

is not essential to select the (0,0) sector as the Nc + Nv closed shell function. Any

suitable choice may be made. For example, if the Nc electron closed shell function is

the (0,0) sector, our target Nc+Nv electron sector would be the (0,Nv) valence sector.

Notice that we have generated much more information than we had asked for. Is this

a blessing or a curse ? Before we answer this let us look at the method of solution of

the VUMRCC equations and the details of the proposed Ansatz.

Taking a cue from the SRCC equations, Mukherjee et al proposed an analogous
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Ansatz for VUMRCC in 1975 as:

⌦ = exp(T ) (A.1)

The set of model functions can be denoted as {�N
v

µ } with the starting function

as  N
v

0k =
P

µ �
N

v

µ cµk8k = 1, Nd. The multi-reference description of a target state is

limited to the valence sector to which it belongs. Incorporation of static correlation

across valence sectors is not possible. Hence, we must carefully choose the (0,0) sector

such that all the model functions important for static correlation are considered in

the same valence sector. Say, our target valence sector is (m,n). Then, the Bloch

equation which can be thought of as a multi-root generalization of the Schrodinger

equation takes the form,

H⌦P (m,n) = ⌦P (m,n)HeffP
(m,n)8m,n (A.2)

where,

Heff = (P (m,n)⌦P (m,n))�1P (m,n)H⌦P (m,n)8m,n (A.3)

The T-operators are independent of the projectors P (m,n) and have the form:

T =
X

mn

T (m,n) (A.4)

Projecting the excited functions, �N
v

l on Eq. (A.2) after pre-multiplying with ⌦�1,

we get the working equation,

h�N
v

l |H|�N
v

µ i = 0 (A.5)

where,

H = exp(�T )H exp(T ) (A.6)

We see here that the unknowns are all T-amplitudes from (0,0) to (m,n) sectors

which are solved in a coupled manner through Eq. (A.5). Since, the T-operators

are normal ordered with respect to the selected core, the active orbitals can occur

as both creation and annihilation operators making the T-operators non-commuting.

As a result, H may contain a term like Fig. A.1 where a (0,1) sector T contributes

to the equation for a (0,0) sector T. This is a confusing feature of the formalism

as it appears physically improbable that the knowledge of correlation of an Nc + 1

electron system would be required to model the correlation of an Nc electron system.

This theory however has no redundant operators and is solved as a matrix equation

or projection equation with as many T-operators as there are linearly independent

excited functions.
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Figure A.1: (0,1) sector T contributes to the equation for a (0,0) sector T for ⌦ =
exp(T )

In 1978, Lindgren proposed an Ansatz for VUMRCC of the form:

⌦ = {exp(T )} (A.7)

where {..} denotes normal ordering of the Ansatz with respect to the core, thereby

ensuring commutativity of the T-operators. He also showed that it was possible

to cast the VUMRCC equations as operator equations making the equations simpler.

However, he was confronted with the problem of a linearly dependent set of operators.

For example, T a
i and T au

iu are linearly dependent. T au
iu is called an operator with a

”direct spectator”. There could only be one equation but if one was to use operator

equations there would have to be separate equations for the two variables or you had

to remove one. Since removing the linearly dependent operators went against the

spirit of the Ansatz where T au
iu is essential to model the change in T a

i say, on removing

an electron from ’u’ for the (1,0) sector or adding an electron to ’u’ for the (0,1) sector,

Lindgren suggested that su�ciency conditions be invoked and T a
i and T au

iu be solved

separately. The normal ordering of the Ansatz made a significant improvement on the

theory by Mukherjee in that it ensured the removal of T-T contraction and removed

the unappealing feature of higher valence sector T operators contributing to lower

valence sector equations. What was thought of as su�ciency conditions by Lindgren

was soon identified by Mukherjee as a so-called ”Sub-system Embedding Condition”

(SEC) rather than a su�ciency. The SEC implied that in order to solve a problem

for a certain valence sector one had to systematically proceed from solution of the

(0,0) sector across all intermediate sectors until the target sector. At each level the

parameters already determined in the lower sector enter the equations as fixed values.



142 Appendix A

This discovery gave the VUMRCC its current widely accepted form. The procedure

for solution of a (1,1) sector problem is illustrated in Fig.A.2.

!"#"$

!"#%$!%#"$

!%#%$

!&#'($

Figure A.2: Sub-system embedding for (1, 1) sector



Appendix 2

The Intruder Problem

The so-called ”Intruder Problem” is a major drawback of any CAS based theory

especially when it tries to construct a PES. Among the MRCC theories, VUMRCC and

SUMRCC encounter this problem more often than not. The energies of all Nd roots

are obtained in such theories by diagonalizing an e↵ective Hamiltonian of dimension

Nd. The problem stems from the fact that the functions in a CAS may not and

generally will not be a reasonable description of all the roots of the problem. The

diagonalization mixes all the functions and hence, the poorly described roots would

spoil the accuracy of even the root which is well described in the CAS. To further

illustrate the problem, let us take a specific example depicted in Fig. B.1. Let, �2
g

and �2
u be 2 functions in a CAS where one of the roots, specifically the ground state is

multi-reference at dissociation having contributions from the 2 model functions �2
g and

�2
u. Thus, in order to plot a PES for the ground state we require static correlation

between �2
g and �2

u. However, near equilibrium, the ground state is largely single

reference and well described by �2
g . The model function �2

u at equilibrium may be

very much higher in energy than �2
g and in fact, closer to some excited function, �m

reached by a T-operator. In this situation the T-amplitude, tm�
u

would be very large

and could jeopardize the convergence of the non-linear set of T-amplitude equations

even before we get to the diagonalization step ! Even if we manage to converge the T-

amplitudes, the accuracy of the ground state would be spoilt by the poorly described

higher root.

An extreme case of the intruder problem arises at curve crossings. The expression
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Figure B.1: The Intruder Problem

for Heff correct up to second order is given by:

Heff µ⌫
(2) =

X

l

h�µ|H|�l
⌫i⌦l

⌫
(1) +Hµ⌫ (B.1)

where,

⌦l
⌫
(1) ⇠ h�l|H|�⌫i

E0
⌫ � E0

l

(B.2)

At the point of curve crossing between �l and �⌫ , ⌦l
⌫
(1) becomes singular and

Heff
(2) becomes indeterminable although the root dominated by �µ which is say, the

ground state, is still perfectly well-described. Using IMS may sometimes solve the

problem but selecting an IMS that is balanced for all roots across the entire PES is,

in general, di�cult.
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Normalization of the Wave Operator

The normalization of ⌦ plays an important role in the details of a theory and can

a↵ect issues like size extensivity. There are three alternatives that have been pursued.

With reference to Eq. (A.3) we see that the expression for Heff takes the simplest

form if we choose ⌦ such that P⌦P = P . This is called Intermediate Normalization

(IN). Using IN with CAS is the most common choice. It was shown by Mukherjee

that if IN was used with an IMS, the theory lost size extensivity and the only way to

restore it was to abandon IN and use the value of P⌦P as is.

The second is the Unitary Normalization where:

⌦�1 = ⌦† (C.1)

This implies,

HQP = HPQ = 0 (C.2)

As suggested by Kemble, this is the minimal condition for ⌦. But, it does impose

any condition on the value of P⌦P and one is free to proceed as before. The third

option is the Jørgensen Normalization which proposes that we only ensure that HPP

is Hermitian but do not constrain HQQ. Thus, ⌦ is parametrized separately for the

”closed” components as X and ”excited” components as T .

⌦ = {exp(T +X)} (C.3)
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P⌦†⌦P = P (C.4)

⌦P = P + ⌦exP + ⌦clP (C.5)

We use Eq. (C.4) in Eq. (C.5) to determine ⌦cl. The unitary normalization and

Jørgensen normalization lead to size extensive equations even for IMS.
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Emergence of e✓

A normal-ordered product of two operators, {eTX} can be written as a product of two

normal-ordered operators, {eT}{Y } by using the Wicks’ theorem in reverse. Y consists

of various terms with contractions between powers of T with X. It is a property of an

exponential operator that the operators left behind after its contraction with another

operator, say, X in this case, can be grouped back into an exponential structure. This

leads to the recursive generation of a series of terms when one applies Wicks’ theorem

in reverse successively on {eTX} as shown in Eqs. D.1-D.4. In this appendix we show

how this series can be compactly written as {eT}{e✓X} where ✓ is a power series in T

where every term is connected. This provides the expression for {Y } as {eT}{e✓X}.
We refer to {eT}{X} as the 0th generation term and each subsequent application of

the Wicks’ theorem in reverse increases the generation of the terms.

{eTX} = {eT}{X}� {eT eTX} (D.1)

= {eT}{X}� {eT}{eTX}+ {eT eT eTX} (D.2)

= {eT}{X}� {eT}{eTX}+ {eT}{eT eTX}� {eT eT eTX} (D.3)

= {eT}{X}� {eT}{eTX}+ {eT}{eT eTX}� {eT}{eT eT eTX}+ ...(D.4)

(D.5)
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Power of T 0 1 2 3
Gen 0 1

Gen I �TX �1
2TTX �1

6TTTX

Gen II TTX 1
2TT (TX) +1

2T (TTX)

TTX 1
2TT (TX) +1

2TT (TX) +1
2T (TTX) +1

2T (TTX)

Gen III -TTTX

-TTTX -TTTX -TTTX

-TTTX

Overall term 1 �TX 1
2TTX + TTX �1

6TTTX -TTTX -TTTX

Table D.1: Terms of various topologies arising from the expansion of {eTX} at various
generations with the corresponding factors indicating the emergence of e✓

We now collect terms having the same power of T contracted to X from the various

generations. The operator X plays a pivotal role in determining the topology of the

connectivity of the T operators. Only those terms can be clubbed together which

have the same connectivity with X. The possible terms for each power of T have been

tabulated in Table D with terms having the same topology in the same row. The

factors accompanying the terms of various topologies indicate the emergence of an

exponential structure for the composite connected to X, which we call e✓. Then, we

can easily see that ✓ itself is also a series of connected operators:

✓ = �T + TT � TTT + ... (D.6)
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Connectivity of the Projection Equations

We have shown in Sec. 2.3.1, that the composites Gµ featuring in the projection

equations are connected. By an analysis of the explicit working equations we have

used, we have been able to prove the size-extensivity of the UGA-SUMRCC and

UGA-QFMRCC theories. However, in a general analysis without considering the

linear dependence or independence of the excitation manifold, it is possible to demon-

strate the connectivity of the working equations. This can be achieved by a cumulant

decomposition of the spin-free RDMs [1, 2] featuring in the projection equations.

We first note that the various ranks n of Gl(n)
µ , can contribute to a matrix element,

h�l
µ|Gl

µ|�µi ⌘ h�l
µ|
X

n

Gl(n)
µ |�µi. Using Eq. 2.6 we may express the matrix elements

as expectation values with respect to �µ :

h�l
µ|
X

n

Gl(n)
µ |�µi = h�µ|{✏lµ}†

X

n

Gl(n)
µ |�µi ⌘ h�µ|{✏µl }

X

n

Gl(n)
µ |�µi (E.1)

Using Wick’s theorem to rewrite the product of {✏µl } with those appearing in Gl(n)
µ ,

it is easy to see that the only non-zero contribution to the matrix element comes from

the terms which are either completely contracted or those involving generators of the

unitary group with active labels only. The latter will give rise to RDMs of various

ranks dependent on the rank of the generators of the unitary group with active labels.

We note now that the set of active orbital labels destroyed by the generators of the
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unitary group must be the same as those created although they are not necessarily

in the same order. For example, in the h-p sector, a �µ ⌘ �(I, A) with I referring to

the active hole and A to the active particle orbital respectively, the non-zero 2-RDMs

can only be �IA
IA and �AI

IA. We would henceforth refer to strict index equality in the

lower and upper indices as ‘diagonality’. When the upper and lower index sets are

equal but not all of the equal labels are in the same order in the upper and lower sets,

we refer to this property as ‘quasi-diagonality’. Hence, �IA
IA is diagonal and �AI

IA is

quasi-diagonal. In our UGA-MRCCs all density matrix elements are either diagonal

or quasi-diagonal.

For the h-p model spaces studied by us here, the non-zero 2-RDMs are not always

product separable and they may lead to disconnected pieces in various terms. The

disconnected pieces appear when a part of the pairs of active orbitals appears only

on the de-excitation part of the operator, {✏µl } and a part on the G-block or when

all the pairs of active orbitals of the RDM come from the {✏µl } only . Representative

diagrams for the first case are shown in Figs. E.1 and E.2. In a CCSD truncation

scheme for a h-p quasi-complete model space, some active lines to the right may

emanate from the G-block and have common labels with active lines to the left which

may have arisen from the projection such as in Fig. E.2. Even though parts of the

2-RDM may occur on di↵erent factors ({✏µl } and Gl(n)
µ ) (as in Fig. E.2), they are by

necessity quasi-diagonal and hence connected. As a consequence, when the factors

{✏µl } and Gl(n)
µ each have a h-p pair on them, the labels on the h-p lines are the

same leading to connected structures. A term like Fig. E.1 does not occur in our

formulation, as we do not have T operators containing direct spectators and hence,

there are no projection equations with {✏µl } having its adjoint structure. However,

we do have the so-called exchange spectator operators and terms like Fig. E.3 arise

which can apparently cause disconnected terms when the label, I, and the pair, i,a

are on di↵erent molecular fragments.

Our intention is to demonstrate that one can eliminate the disconnected terms via

cumulant decomposition.We shall show that the disconnected quantities for a given

working equation get canceled on invoking the working equations for other, lower

rank, t-amplitudes. In order to match terms between equations, it becomes necessary

to decompose higher body densities into lower body densities via a so-called cumulant

decomposition [1, 2]. We will also demonstrate that in order to factor out the lower

body equation from the higher body equation in its entirety, we need to introduce

terms containing higher body densities which are zero in value. The strategy used by

us is general and may be suitably extended for analyzing the connectivity for general

mh-np quasi-complete model spaces.
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Using the general definition of a spin-free cumulant[1, 2], we have:

�uv
wx = h�µ|{Eu

w}|�µih�µ|{Ev
x}|�µi

�1
2h�µ|{Eu

x}|�µih�µ|{Ev
w}|�µi+ ⇤uv

wx (E.2)

�xyz
uvw = h�µ|{Ex

u}|�µih�µ|{Ey
v}|�µih�µ|{Ez

w}|�µi
�1

2h�µ|{Ex
u}|�µih�µ|{Ey

w}|�µih�µ|{Ez
v}|�µi+ h�µ|{Ex

u}|�µi⇤yz
vw

�1
2h�µ|{Ex

w}|�µih�µ|{Ey
v}|�µih�µ|{Ez

u}|�µi+ h�µ|{Ey
v}|�µi⇤xz

uw

�1
2h�µ|{Ex

v }|�µih�µ|{Ey
u}|�µih�µ|{Ez

w}|�µi+ h�µ|{Ez
w}|�µi⇤xy

uv

+1
4h�µ|{Ex

w}|�µih�µ|{Ey
u}|�µih�µ|{Ez

v}|�µi
+1

4h�µ|{Ex
v }|�µih�µ|{Ey

w}|�µih�µ|{Ez
u}|�µi+ ⇤xyz

uvw (E.3)

AA

I

a

I

i

Figure E.1: Apparently disconnected term when I and A are on di↵erent fragments.
We note here that the left-most projection operator is a de-excitation operator and is
not associated with a connected amplitude. Hence, one would have to keep in mind
that it is not a connected entity, unlike the G-blocks on the right. The same holds
good for the de-excitation operators in Figs. E.2 and E.3.

i

a

A

I

A

I

Figure E.2: Apparently disconnected term with quasi-diagonal RDM.

I

I i

a

Figure E.3: Occurrence of disconnected RDM and excitation.
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for arbitrary active indices u-z, which maybe holes or particles. We note here that for

a general mh-np active situation, ⇤ is a connected quantity containing the exchange

components of the product of one-body RDMs along with spatial cumulants. However,

in our special 1h-1p situation, the prior quantities are zero and hence, we deal with

cumulants only.

We define the 1h density matrix element ⌘II as: ⌘II =
X

�

= h�µ|I�I†�|�µi =

�h�µ|{EI
I }|�µi = 1. �AA is obviously equal to h�µ|{EA

A}|�µi = 1. To calculate the

values of the non-zero 2-body RDMs we note that:

{EIA
IA} =

X

�1�2

{I†�1
A†

�2
A�2I�1}

= �
X

�1�2

{I�1I
†
�1
A†

�2
A�2}

= �
X

�1

I�1I
†
�1

X

�2

A†
�2
A�2

(E.4)

and

{EAI
IA} =

X

�1�2

{A†
�1
I†�2

A�2I�1}

=
X

�1�2

{A†
�1
A�2I�1I

†
�2
}

=
X

�1�2

A†
�1
A�2I�1I

†
�2

It then follows that:

�IA
IA = h�µ|{EIA

IA}|�µi
= �⌘II�AA + ⇤IA

IA (E.5)

�AI
IA = h�µ|{EAI

IA}|�µi
= 1

2⌘
I
I�

A
A + ⇤AI

IA (E.6)

In order to get at the general case, we introduce the quantity, ⇤IA
IA although, we keep

in mind that ⇤IA
IA = 0. The exchange cumulants encode spin correlation and their

values may be obtained from:

⇤AI
IA = h�µ|

P
�1 6=�2

A†
�1
A�2I�1I

†
�2
|�µi (E.7)

For the h-p CSFs it then follows that ⇤IA
IA is zero and ⇤AI

IA is non-zero indicating that

�AI
IA is not exactly factorizable into products of lower body RDMs.
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The explicit working equations for tai , t
Ia
iI and tAa

iA operators in the 1h-1p sector are

reproduced here from Eqs. 2.54, 2.55 and 2.56 for ease of reference:

Ga
i �GaI

iI ⌘
I
I +GaA

iA �
A
A � 1

2
GIa

iI ⌘
I
I �

1

2
GAa

iA �
A
A +GaIA

iIA �IA
IA � 1

2
GAaI

iAI �IA
IA

�1

2
GIaA

iIA �IA
IA +GaAI

iIA �AI
IA � 1

2
GAaI

iIA �AI
IA � 1

2
GIaA

iAI �AI
IA = 0 (E.8)

Ga
i ⌘

I
I �GaI

iI ⌘
I
I �GaA

iA �IA
IA + 2GIa

iI ⌘
I
I �GAa

iA �IA
AI +GaIA

iIA �IA
IA +GAIa

iIA �AI
IA

�2GIaA
iIA �IA

IA +GaAI
iIA �AI

IA � 2GaAI
IiA �AI

IA +GIaA
iAI �IA

IA = 0 (E.9)

�Ga
i �

A
A �GaI

iI �IA
IA �GaA

iA �
A
A �GIa

iI �IA
AI + 2GAa

iA �
A
A �GaIA

iIA �IA
IA + 2GAIa

iIA �IA
IA

�GIaA
iIA �AI

IA �GaAI
iIA �AI

IA + 2GaAI
IiA �AI

IA +GIaA
iAI �IA

IA = 0 (E.10)

To ascertain the connectivity of the working equations, by the strategy delineated

in the paragraphs above let us consider the specific example of the pair of projection

equations for tai and tIaiI , ie. Eqs. E.8 and E.9. We note that the active label, I, in the

de-excitation operator, EIi
aI will always contribute an RDM where ‘I’ will figure in both

the upper and lower indices. Among the various terms generated in the projection

equations, there will be some terms containing ⌘II while the rest of the terms will

contain either �IA
IA or �AI

IA. The latter two can also be written in terms of factors ⌘II ,

�AA and a cumulant, ⇤, if we use Eqs. E.5 and E.6. Thus the entire set of projection

equations can be grouped into two parts: in one ⌘II explicitly appears and in the other

only ⇤IA
IA or ⇤AI

IA but no ⌘II appears. It is then possible to rewrite Eq. E.9 as:

⌘II [G
a
i �GaI

iI + 2GIa
iI + �AA(�GaA

iA +GaIA
iIA � 2GIaA

iIA +GIaA
iAI )

�1
2�

A
A(�GAa

iA +GAaI
iAI +GaAI

iIA � 2GAaI
iIA )]

Term (i)

+⇤IA
IA(�GaA

iA +GaIA
iIA � 2GIaA

iIA +GIaA
iAI ) + ⇤AI

IA(�GAa
iA +GAaI

iAI +GaAI
iIA � 2GAaI

iIA ) = 0

Term (ii) (E.11)

We note that in Term (i) there are several components in which the pair of lines

containing label, I, are generated exclusively from the de-excitation operator, EIi
aI .

These components are all disconnected, and they are all characterized by the property

that the label, ‘I’, never appears in the associated G-blocks. These disconnected entities

have been shown in bold letters. It is remarkable that all the components in Term

(i) appearing in the brackets, (...) in Eq. E.11 appear in Eq. E.8 which originates

from the projection with Ei
a. However, there are more components in Eq. E.8 than

what appears in Term (i). The missing entities in Term (i) are those in Eq. E.8

which contain: (a) ⌘II and (b) the 2-RDMs, �IA
IA and �AI

IA . These terms obviously

cannot appear in Term (i), since this would have required a cumulant decomposition
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of a 2-RDM, �II
II for (a) and 3-RDMs in Eq. E.9 containing at least one ’I’ in both

its upper and lower indices. For h-p CSFs, �II
II and all the 3-RDMs are zero since

such density matrices would have violated the exclusion principle in a �µ where there

are only single active hole and particle occupancies labeled by I and A respectively.

In order to complete the appearance of all components of Eq. E.8 in Term (i), we

add to Eq. E.9 all those components which contain �II
II and 3-RDMs which do not

change the equation since they are all zero in value. We thus add the following sum

of components each of which is individually zero:

�GIa
iI �II

II ,�GAaI
iAI �AII

IAI ,�GaIA
iIA �IAI

IAI ,�GaAI
iIA �IAI

IIA,�GAaI
iAI �IAI

IAI ,�GIaA
iIA �AII

IAI ,�GIaA
iAI �AII

IAI

(E.12)

Eq. E.9 thus becomes:

Ga
i ⌘

I
I �GaI

iI ⌘
I
I �GaI

iI �II
II �GaA

iA �IA
IA + 2GIa

iI ⌘
I
I �GIa

iI �II
II �GAa

iA �IA
AI

+GaIA
iIA �IA

IA +GAIa
iIA �AI

IA � 2GIaA
iIA �IA

IA +GaAI
iIA �AI

IA � 2GaAI
IiA �AI

IA +GIaA
iAI �IA

IA

�GAaI
iAI �AII

IAI �GaIA
iIA �IAI

IAI �GaAI
iIA �IAI

IIA �GAaI
iAI �IAI

IAI �GIaA
iIA �AII

IAI �GIaA
iAI �AII

IAI = 0

(E.13)

The cumulant decomposition of the zero RDMs would generate either a product of

cumulants containing an ⌘II and some 2-⇤ or, a product of 1-RDMs, one of which

would be ⌘II or, a 3-⇤. In fact, the cumulant decomposition of the associated zero 2-

and 3-RDMs have the expressions:

�II
II = 0 = 1

2⌘
I
I
2
+ ⇤II

II (E.14)

�AII
IAI = 0 = �1

4⌘
I
I
2
�AA � ⌘II⇤AI

IA + ⇤IAI
AII (E.15)

�IAI
IAI = 0 = 1

2⌘
I
I
2
�AA � 2⌘II⇤IA

IA + �AA⇤II
II + ⇤IAI

IAI (E.16)

Using the expressions above, we can include the missing components of Eq. E.8

in Term (i) (to be henceforth called modified Term (i)) and club the rest of the

contribution of Eq. E.12 into Term (ii) (to be henceforth called modified Term (ii)).

We show explicitly only the terms containing two body G-blocks to avoid complexity.

The decomposition of the higher body densities using Eqs. E.14-E.16 can be similarly

carried out.

⌘II [G
a
i �GaI

iI ⌘
I
I +GaA

iA �
A
A � 1

2G
Ia
iI ⌘

I
I � 1

2G
Aa
iA �

A
A ]

Modified Term (i)

+(12⌘
I
I
2 � ⌘II � ⇤II

II)G
aI
iI + (�1

2⌘
I
I
2 + 2⌘II � ⇤II

II)G
Ia
iI � ⇤IA

IAG
aA
iA � ⇤AI

IAG
Aa
iA = 0

Modified Term (ii) (E.17)
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Owing to the validity of Eq. E.8, the entire modified Term (i) vanishes making

Eq. E.9 reduce to just the modified Term (ii) for up to two body G-blocks:

(
1

2
⌘II

2 � ⌘II � ⇤II
II)G

aI
iI + (�1

2
⌘II

2 + 2⌘II � ⇤II
II)G

Ia
iI � ⇤IA

IAG
aA
iA � ⇤AI

IAG
Aa
iA = 0 (E.18)

Since, 2- and 3-⇤s are all connected quantities, Eq. E.9 written in terms of the

cumulants, ⇤, consists entirely of connected terms. Some components in the modified

Term (ii) contain only 3-⇤s and their connectivity ensures that each such component is

connected. There would also be some contribution coming from products of �AA and a

2-⇤ where the �AA always occurs on the G-block. Hence these components are also con-

nected. By an entirely similar reasoning, Eq. 2.61 involving the de-excitation operator

EAi
aA upon cumulant decomposition would also reduce to a set of connected compo-

nents involving cumulants after invoking Eq. E.8. Here the roles of �AA and ⌘II would

be interchanged. Moreover, also for true excitations involving active orbitals (such as

I ! a or i ! a) the projection equations involving an exchange spectator scattering

in the de-excitation operator can be similarly transformed into a set of connected

components containing the appropriate 2-⇤s and 3-⇤s. The disconnected components

along with several other connected components and appropriate densities vanish be-

cause of the validity of the lower body equations without the spectators. Turning now

to the 1-body projection equations, the uncontracted active lines in a composite may

appear either entirely on the G-block which is explicitly connected or one on the pro-

jection and the other on the G-block. In the latter case diagonality/quasi-diagonality

of RDMs ensures that they are connected since the active line on the de-excitation

operator would have one label in common with one of those occurring on the G-block.

It is interesting to note that, the proof of the connectivity brought to the fore the

use of 2- and 3-⇤s having indices for which the corresponding 2- and 3-�s vanish due

to the Pauli Exclusion principle. This is clearly demonstrated in Eqs. E.14, E.15

and E.16 above. We may call such cumulants as Exclusion Principle Violating (EPV)

⇤s. For the h-p case at the CCSD level of truncation, the connected expressions will

contain up to 3-⇤s. For higher truncation schemes, 4- and higher rank ⇤s can also

appear.

The decomposed working equations (for example, Eq. E.18) are reminiscent of

the expressions one would obtain using Ts in Generalized Normal Ordering (GNO)

introduced by Mukherjee [1] and further elaborated by Kutzelnigg and Mukherjee [2].

We may then envisage that an Ansatz of the form:

⌦µ = {e{T}
µ} (E.19)

where the cluster operators for each model function, �µ, are written in GNO with re-

spect to �µ may lead to a more compact representation of the working equations. The
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GNO for spinorbitals, written with respect to an MR state,  0, has two properties: (i)

the operators anti-commute under GNO and (ii) the expectation value of an operator

in GNO with respect to  0 vanishes. We denote by the symbol, {...}µ, a product in

GNO with respect to �µ. The usual curly bracket notation, {...}, is still reserved for

an ordinary normal-ordered product. We do not want to elaborate on this strategy

any further in this thesis.

The same conclusions could have been drawn by an alternative but equivalent

strategy. If we include in a projection equation, such as Eq. E.9, all the possible

higher body RDM, n > 2 in our case, for a given model function �µ and use cumulant

decompositions for all of them, then, in general, all the disconnected terms cancel

out because of the validity of lower body equations, leaving us with connected terms

and higher body cumulants. Clearly, this method will prove to be more profitable for

the general mh-np case. We note that although in our h-p model spaces, all higher

body ⇤s are of EPV type, such is not the case of a general mh-np active space. The

alternative strategy introduced by us above becomes then much easier for the purpose

of discerning connectivity.

Since the above two strategies are equivalent for proving the connectedness of the

working equations, in our actual implementation we have used the parent projection

equations like Eq. E.9. Solving Eqs. E.8 and E.9 is equivalent to solving Eqs. E.8 and

E.18 and the same is true for other projection equations. We must, however, bear in

mind that, although the n-body RDM elements corresponding to the EPV types are

zero, the corresponding n-body ⇤s are necessarily not so. Hence, in order to adopt

this scheme one must start with all possible RDMs, even those of ranks beyond the

number of active electrons, in the parent projection equations. For the h-p case, the

vanishing �3s are actually implicitly included (though only formally so).

We also note that approximations in ⇤ may be made, especially for more than

two active electrons. Such approximations are more valid physically than a similar

truncation in the rank of �. An n-body ⇤ corresponds to an n-electron correlation

contribution and hence might decay rapidly with increase in 0n0, while an n-body � may

be related to 0upto0 n-electron correlation and hence, a truncation in its rank cannot

be related to physical considerations. In a case of more than two active electrons, the

non-zero three body RDMs arise in this formulation. However, it is highly beneficial to

use only up to two-body RDMs and hence, the latter scheme allows us the possibility

under the approximation that we neglect three and higher body cumulants.
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Appendix 6

EOM-CC Basics

EOM-CC considers a closed shell ground state,  gr, correlated at the CC level and

aims to generate the higher energy states,  k, having same or di↵erent number of

electrons by a linear operator on the correlated ground state function. Notationally,

we may write the parametrized wave functions as:

 gr = exp(T )�0 (F.1)

 k = exp(T )Rk�0 (F.2)

where,

Rk = Y †
k ck (F.3)

The Schrödinger equations for the two states are thus,

H exp(T )�0 = Egr exp(T )�0

exp(�T )H exp(T )�0 = Egr�0

H�0 = Egr�0 (F.4)

and

H exp(T )Rk�0 = Ek exp(T )Rk�0 (F.5)
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Pre-multiplying Eq. (F.4) by Rk and subtracting it from Eq. (F.5), we arrive at

the equation:

[H,Rk]�0 = �EkRk�0 (F.6)

where,

�Ek = Ek � Egr (F.7)

Note that, Rks are chosen to be of excitation structure only and hence, commute

with the T-operators. If Rks and Ts were not commuting, an alternative inequivalent

parametrization of  k would have been,

 k = Rk exp(T )�0 (F.8)

Projecting with the manifold of excited functions, we get:

X

l

h�0|Yl[H, Y †
k ]|�0ick =

X

l

�Ekh�0|YlY
†
k |�0ick (F.9)

For an orthonormal set of excited functions, Eq. (F.9) reduces to Eq. (F.10):

X

l

(h�0|YlHY †
k |�0i � h�0|YlY

†
kH|�0i)ck =

X

l

�Ek�lkck (F.10)

The Egr part of H cancels between the first and second terms on the LHS .

X

l

(h�0|YlHopY
†
k |�0i � h�0|YlY

†
kHop|�0i)ck = �Ekck (F.11)

In the second term on the left of Eq. (F.11), YlY
†
k = �lk which survives only for

l=k when h�0|Hop|�0i = 0. Thus, the final equation for EOM-CC takes the form:

X

l

(h�l|Hop|�kick = �Ekck (F.12)

In this way all of Fock space (i.e., the space with any number of electrons) is

accessible to the EOM-CC equations which amount to just a non-Hermitian matrix

diagonalization. The matrix to be diagonalized is by construction non-Hermitian as

HQP = 0 but HPQ 6= 0 and may sometimes give complex eigenvalues although this is

quite rare. An alternative is to project with the true left eigenvectors of H which is

called ⇤-EOM-CC. In the latter case, both HQP = 0 and HPQ = 0.

EOM-CC treats �0 like a CC and the excited functions like a CI. It is understand-

able that this theory is thus only ”core extensive” which means that with increasing

system size, the core energy, Egr, scales properly but the valence correlation intro-

duced for the target P-space functions via the diagonalization does not. However,
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since the bulk of the energy comes from the core, EOM-CC is a better theory than

just a CI.

The very common choices of Rks for excited state generation are combinations

of h-p and 2h-2p creation operators with respect to |0i taken as the vacuum and

for ionization, h creation and 2h-p creation opera- tors. Except for a closed shell

single determinant |0i reference state, the excited state energies Ek also correspond

to spin broken solutions. One important virtue of the response methods is that the

excitation energy, �Ek can be directly computed. In fact, the excited state energies,

Ek, if desired, are obtained by the formula Ek = Eg +�Ek. This is why the response

methods are ideally suited for excitation or ionization energies with respect to a closed

shell ground state.
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Appendix 7

Sample Input Files

In this appendix we first provide the meanings of the possible keywords in the input

file mrcc.inp and explain how to set up the model function definitions in the file

modelfn.inp. We then provide two sample input files for the three spin-free MRCC

theories which can be run using this code. The keyword dependencies are also ex-

plained as completely as possible. Some keywords may appear to be redundant as

the code also has some capabilities of running analytic gradients for computation of

properties which is under development but we mention the keywords here for com-

pleteness. The output is written to screen and to the output file mrcc.out . The

output file also contains some additional information.

mrcc.inp

$mol

mol=name of molecule

nucr=nuclear repulsion energy

diphf x,diphf y,diphf z=x,y and z components of the dipole moment at the SCF level

$norb

nbfn=no. of basis functions

no=number of inactive occupied

nu=number of inactive virtuals
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nact=number of active orbitals

nah=number of active holes

nap=number of active particles

$modelspace

nvac= model space dimension

ne=number of active electrons

$state

istate=targeted state (as per GUGA-MCSCF ordering) for state specific calculations

spin=spin multiplicity of state, spin=1 for singlet, 2 for doublet, 3 for triplet, etc.

$filenames

vfile=Name of 2e integral file (generally vfile=DASORT for UGA-SUMRCC/UGA-

QFMRCC/UGA-SSMRCC+GAMESS)

fmat=Name of 1e integral file (generally fmat=FOCKMAT for UGA-SUMRCC/UGA-

QFMRCC+GAMESS and fmat=FCORE for UGA-SSMRCC+GAMESS)

dipolx,dipoly,dipolz=Name of dipole integral file (generally dipx,dipy,dipz)

vfile,fmat,dipolx,dipoly,dipolz are not required if in $flags package=‘dirac’ or ‘london’

t1file,t2file= Name of file for writing converged t and s amplitudes

$flags

sector = 1 for n-hole valence sector

= 2 for n-particle valence sector

= 3 for 1h-1p valence sector

MCSCF=.true. if orbitals are MCSCF orbitals; CAS matrix is recomputed.

LIN=.true. if only linearly independent T operators are desired. At present imple-

mented for 1h-1p and 2p triplet only

LCCD=.true. if only linear CCD is desired

OR

LCCSD=.true. if only linear CCSD is desired

OR

CCD=.true. if non-linear CCD is desired

OR

CCSD=.true. if full non-linear CCSD is desired

package=‘gamess’ or ‘dirac’ or ‘london’, the name of the package supplying integral

files

PROP=.true. if property calculations are required

AT=.false. if auto tensor is not desired for tensor contractions (currently cannot be
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used)

QF=.true. for UGA-QFMRCC

OR

SS=.true. for UGA-SSMRCC

OR

SRCC=.true. for SRCC

UGA-SUMRCC is the default

OUT OF CORE=.true. if out of core storage for VPPPP integrals is desired

$iteration

nitmax T= max no. of iterations for T eq

iconv T=10E-iconv is the convergence criteria for T

nitmax L=max no. of iterations for T eq

iconv L=10E-iconv is the convergence criteria for �

$thresholds

thrs=threshold value for writing converged t and s amplitudes

tlrnc=threshold value for setting very small t amplitudes to zero

iter freeze=number of initial iterations for which the t amplitudes of model functions

with coe�cients less than 10�3 will be kept frozen at the perturbative value

$shifts

sh T,sh L=Denominator shift to aid in convergence;It is a tunable parameter for T

and � respectively

fact= fact is multiplied to residue before increment of T and L is calculated

denom shift=.false. if only orbital energy di↵erences are desired as denominator for

updating t amplitudes

$diisgrp

diis=1,2,3,...,nvac if DIIS is desired for all model fns. Put 0 for those model fns where

DIIS is not desired

diis solver= 1 for non-overlapping scheme; requires ndiis and nskip

= 2 for cumulative scheme; requires diismin and diismax

ndiis=No. of past iteration vectors desired in the iterative subspace

nskip=No. of iterations after which DIIS will be done periodically

diismin=minimum no. of vectors to be kept in the iterative subspace

diismax=maximum no. of vectors to be kept in the iterative subspace
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modelfn.inp

Three lines are required for each model function CSF. The CSFs are identified by

the occupancies of the active orbitals. CSFs with same occupancy but di↵erent spin-

coupling schemes must be repeated in the input. The lines are unformatted and have

the following meanings:

First line : ndoc nopn h nopn p nvirt

Second line : Orbital indices of occupied/partly occupied orbitals in the order

doubly occupied followed by singly occupied

Third line : Orbital indices of unoccupied/partly unoccupied orbitals in the order

singly occupied followed by unoccupied

ndoc, nopn h, nopn p and nvirt are the number of doubly occupied, singly occupied

hole, singly occupied particle and vacant orbitals in the model function respectively.

Defaults

PROP=.false.

LCCD=.false.

LCCSD=.false.

CCD=.false.

CCSD=.true.

AT=.true.

QF=.false.

SS=.false.

OUT OF CORE=.false.

RESTART=.false.

nrestart=0

denom shift=.true.

nvac=0

diis solver=2
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UGA-SUMRCC for ionizations from HOMO and HOMO-1 of H2O in

cc-pVDZ basis using integrals from GAMESS

mrcc.inp

&MOLmolecule=’H2O’ nucr=9.0092847301 diphf x=0.0 diphf y=0.0 diphf z=0.0 &END

&STATE istate=1 spin=2 &END

&FLAGSMCSCF=.F. LIN=.F. sector=1 CCSD=.T. package=’gamess’ QF=.F. AT=.T.

&END

&NORB nbfn=24 no=3 nu=19 nact=2 nah=2 nap=0 &END

&MODELSPACE ne=3 nvac=2 &END

&ITERATION iconv T=8 iconv L=8 nitmax T=100 nitmax L=100 &END

&SHIFTS fact=1.0d0 sh T=0.0d0 sh L=0.0d0 &END

&THRESHOLDS thrs=10E-2 &END

&DIISGRP diis(1)=1,2 diismin=3 diismax=5 &END

&FILENAMES vfile=’DASORT’ fmat=’FOCKMAT’ t1file=’T1.DAT’ t2file=’T2.DAT

’ dipolx=’DIPX’ dipoly=’DIPY’ dipolz=’DIPZ’ &END

modelfn.inp

1 1 0 0

4 5

5

1 1 0 0

5 4

4

UGA-SSMRCC for 1⌃ ground state of LiH using (2,2) CAS in cc-pVDZ

basis using integrals from GAMESS

mrcc.inp

&MOLmolecule=’LiH’ nucr=0.9922073423 diphf x=0.0 diphf y=0.0 diphf z=0.0 &END

&STATE istate=1 spin=1 &END

&FLAGSMCSCF=.T. LIN=.F. sector=2 CCSD=.T. package=’gamess’ AT=.T. SS=.T.

&END

&NORB nbfn=19 no=1 nu=16 nact=2 nah=0 nap=2 &END

&MODELSPACE nvac=3 ne=2 &END

&ITERATION iconv T=8 iconv L=8 nitmax T=100 nitmax L=100 &END

&SHIFTS fact=1.0d0 sh T=0.0d0 sh L=0.0d0 &END



&THRESHOLDS thrs=10E-3 tlrnc=10E-4 iter freeze=0 &END

&DIISGRP diis(1)=1,2,3 diismin=2 diismax=4 &END

&FILENAMES vfile=’DASORT’ fmat=’FCORE’ t1file=’T1.DAT’ t2file=’T2.DAT ’

dipolx=’DIPX’ dipoly=’DIPY’ dipolz=’DIPZ’ &END

modelfn.inp

1 0 0 1

2

3

0 1 1 0

2 3

2 3

1 0 0 1

3

2
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