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 A B S T R A C T

In this paper, we describe a general relativistic hydrodynamics simulation code which is developed to simulate 
advective accretion flow onto black holes. We are particularly interested in the accretion simulations of sub-
Keplerian matter in the close vicinity of black holes. Due to the presence of centrifugal barrier, a nearly 
free-falling sub-Keplerian accretion flow slows down close to a black hole and can even pass through shocks 
before accelerating again to the black hole. We design our simulation code using the high resolution shock 
capturing scheme so that such shock structures can be captured and analyzed for relevance. In this paper, we 
describe our implementation and validation of the code against a few known analytical and numerical results 
of sub-Keplerian matter accretion.
. Introduction

In a black hole X-ray binary (BHXRB) system or at the center of a 
alaxy, usually rotating fluid consisting of mostly plasma is accreted 
nto a black hole. Strong gravity in the close vicinity of the black 
ole affects fluid motion in a way that Newtonian potential cannot 
xplain. For example, the effective potential experienced by a rotating 
article in the general relativistic calculation shows the presence of 
 finite height potential barrier in contrast to an infinite barrier as 
n the calculation using Newtonian gravitational field (Misner et al., 
973; Shapiro and Teukolsky, 1983). This barrier is produced by the 
entrifugal force and the height of this barrier in general relativistic 
alculation depends on the magnitude of the angular momentum of 
he particle. Depending on the energy content of the particle, this 
otential barrier can give rise to a capture orbit or deflect particle 
way from the black hole or even allow the particle to be accreted 
y the black hole (Shapiro and Teukolsky, 1983). Though the fluid 
otion is fundamentally different from a particle motion, such general 
onclusions derived from particle dynamics also hold for fluid motion. 
hus, for the studies of accretion onto black holes, many research 
roups prefer to solve general relativistic fluid dynamic equations.
Over the past 50 years, several numerical simulation codes for solv-

ng the time-dependent general relativistic fluid dynamics equations 
ave been developed (Wilson, 1972; Hawley et al., 1984; Banyuls et al., 
997; Del Zanna and Bucciantini, 2002; Gammie et al., 2003; Font, 
008; Porth et al., 2017, 2019, and references therein). Many of these 
imulation frameworks assume the total mass of the accretion disk to 
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be negligible compared to the central accretor so that the space–time 
metric remains unchanged throughout the simulation. Current practice 
in the accretion disk simulation community is to use an equilibrium 
thick disk solution threaded by a seed magnetic field as the initial 
condition (Abramowicz and Fragile, 2013). This seed magnetic field 
generates some instability inside the disk so that the equilibrium con-
dition is broken and a significant part of matter starts getting accreted 
onto the black hole.

In contrast to this, one can consider a more realistic set up where 
the matter comes from, ideally, an infinite distance (e.g, the companion 
star in the case of BHXRB or ISM in the case of black hole at the center 
of galaxy) to the accreting black hole. Due to limited computational 
resources, we of course cannot simulate the entire accretion process. 
So, we simulate the dynamically important inner part of the disk and 
rely on the analytical solution for the rest of the part. To simulate 
such a configuration, one considers the matter to enter the simulation 
domain through the outer boundary located at a finite distance from 
the black hole. And, inside the simulation domain, the solution of the 
time-dependent equations self-consistently determines the flow config-
uration. Thus, one applies an appropriate inflow boundary condition 
at the outer boundary and supplies the flow parameters there. These 
inflow parameters are chosen in such a way that they are consistent 
with certain analytical solution that extends up to the infinite distance. 
Several analytical advective accretion solutions are present in literature 
which connects black horizon with infinite distance (e.g., Bondi accre-
tion solution (Bondi, 1952), slim disk (Abramowicz et al., 1988), hybrid 
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model flows (Chakrabarti, 1989a), ADAF solution (Narayan and Yi, 
1994) etc.). Therefore, at the outer boundary of the simulation domain 
one can use the analytically calculated values of flow parameters using 
such solutions.

Simulations of purely radial, Bondi type accretion flow does not 
produce significant variability. Rather, simulations of quasi-spherical, 
rotating accretion flow show interesting flow features. Accretion disk 
simulations with Bondi-type density and radial velocity distribution 
along with an additional, arbitrary latitude-dependent angular momen-
tum component as the inflow boundary condition have been conducted 
using non-GR (Proga and Begelman, 2003; Janiuk et al., 2008; Li et al., 
2013) as well as GR codes (Suková et al., 2017; Ressler et al., 2021; 
Lalakos et al., 2022; Kaaz et al., 2023; Cho et al., 2023; Olivares 
et al., 2023; Dihingia and Mizuno, 2024). We are rather interested 
in solutions of rotating flows which self-consistently takes the matter 
rotation into account. Steady state solutions, extending from horizon 
to infinity, of the rotating fluids with sub-Keplerian angular momentum 
(at a large distance from a black hole) are present in literature (Fukue, 
1987; Chakrabarti, 1989b). The solution shows that the centrifugal 
barrier can slow down the nearly free fall motion of the flow close to 
the black hole. This barrier can even force the fluid to pass through 
shocks before being accreted. These solutions are advective and show 
significantly high value of radial velocity except near the shock location 
where the flow is nearly halted. When the angular momentum is set to 
zero, the solution becomes identical to the standard Bondi accretion 
solution.

Numerical simulations of this flow in the close vicinity of the 
black holes have resulted in a dynamical flow configuration which 
can explain several observational features (Molteni et al., 1994; Ryu 
et al., 1997; Chakrabarti et al., 2004; Garain et al., 2014; Das et al., 
2014; Lee et al., 2016; Patra et al., 2019; Debnath et al., 2024). Many 
of these simulation works are done using pseudo-Newtonian potential 
proposed in Paczyńsky and Wiita (1980). This potential reproduces 
the effective potential around a non-rotating black hole satisfactorily 
well. However, being non-general relativistic, it has several drawbacks 
compared to the Schwarzschild spacetime. For example, computations 
show that the fluid bulk velocity can become super-luminal close to 
the horizon. Additionally, the effects of space–time dragging due to 
black hole rotation cannot be investigated. For these reasons, it is 
beneficial to study such accretion flow using a general relativistic fluid 
solver in the Kerr background. A few simulation results for this kind of 
flow with above-mentioned set-up are reported in Kim et al. (2017a, 
2019). However, further extensions are not reported. In this paper, 
we describe the development of a general relativistic hydrodynamics 
simulation code, designed specifically to implement the above set-up 
and study such advective flow. We provide results of several validating 
test problems where we compare the numerical solutions obtained 
using this simulation code with the analytical solutions for the above 
mentioned advective flow.

Our paper is organized as follows: In Section 2, we provide a very 
brief overview of the general relativistic analytical solution of the sub-
Keplerian accretion flow. We shall use these solutions as our benchmark 
test problems. In Section 3, we introduce the time-dependent general 
relativistic hydrodynamics (GRHD) equations and our numerical so-
lution methodology. In Section 4, we present the results. Finally, in 
Section 5, we provide a summary and our concluding remarks.

In our following calculations, we use 𝑟𝑔 = 𝐺𝑀𝑏ℎ∕𝑐2 as unit of 
distance, 𝑟𝑔∕𝑐 as unit of time and 𝑟𝑔𝑐 as unit of specific (i.e., per unit 
mass) angular momentum. Specific energy is measured in the unit of 
𝑐2. Here, 𝐺 is the gravitational constant, 𝑀𝑏ℎ is the mass of the black 
hole and 𝑐 is the speed of light in vacuum.

2. Theory of sub-Keplerian advective flow

General relativistic, steady state sub-Keplerian advective flow so-
lution is discussed in great details in many Refs. Chakrabarti (1990, 
2 
1996a,c,b). Here, we provide a very brief discussion for the sake of 
completeness. Analytical solution aims to find the radial variation of 
solution variables under various flow models such as wedge flow, 
constant height flow and vertical equilibrium. For analytical studies, 
we use the following form of Kerr metric (valid only near the equatorial 
plane) expressed in cylindrical coordinates: 
𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈

= − 𝑟2𝛥
𝛿

𝑑𝑡2 + 𝛿
𝑟2

(𝑑𝜙 − 𝜔𝑑𝑡)2 + 𝑟2

𝛥
𝑑𝑟2 + 𝑑𝑧2

(1)

(Novikov and Thorne, 1973). Here,
𝛿 = 𝑟4 + 𝑟2𝑎2 + 2𝑟𝑎2, 𝛥 = 𝑟2 − 2𝑟 + 𝑎2, 𝜔 = 2𝑎𝑟∕𝛿,

𝑎 being the spin parameter of the black hole.
Steady state solution of non-dissipative sub-Keplerian advective 

flow is derived using the conservation equations of mass accretion rate 
�̇� and specific energy 𝜖:
�̇� = 𝜌𝑢𝑟𝐴 (2)

𝜖 = ℎ𝑢𝑡 =
1

1 − 𝑛𝑎2𝑠
𝑢𝑡. (3)

Here, 𝜌 is the rest-mass density, 𝑢𝑟 is 𝑟 component of the four-velocity 
𝑢𝜇 , 𝐴 is a geometric quantity representing the surface area through 
which mass flux is considered. For different flow models, 𝐴 may have 
different expressions. ℎ = 1∕(1 − 𝑛𝑎2𝑠 ) represents the enthalpy with 𝑎𝑠
being the sound speed. 𝑢𝑡 is the 𝑡 component of the four velocity 𝑢𝜇 and 
is obtained using the normalization 𝑢𝜇𝑢𝜇 = −1 as follows: 

𝑢𝑡 =

[

𝛥
(1 − 𝑉 2)(1 −𝛺𝑙)(𝑔𝜙𝜙 + 𝑙𝑔𝑡𝜙)

]1∕2

. (4)

Here, 𝛺 is the angular velocity of the rotating fluid 

𝛺 = 𝑢𝜙

𝑢𝑡
= −

𝑔𝑡𝜙 + 𝑙𝑔𝑡𝑡
𝑔𝜙𝜙 + 𝑙𝑔𝑡𝜙

, (5)

and 𝑙 = −𝑢𝜙∕𝑢𝑡 is the specific angular momentum (angular momentum 
per unit mass) and it is a conserved quantity. Also, the radial velocity 
 in the rotating frame is 
 = 𝑣

(1 −𝛺𝑙)1∕2
, (6)

where 

𝑣 =
(

−
𝑢𝑟𝑢𝑟

𝑢𝑡𝑢𝑡

)1∕2
. (7)

Next, one takes derivative of �̇� and 𝜖 w.r.t. 𝑟 and eliminates 𝑑𝑎𝑠∕𝑑𝑟
from both the equations and finally, obtains an equation for 𝑑∕𝑑𝑟. 
Imposition of transonic condition in this equation enables us to find 
the critical (transonic) points. This imposition implies that such a 
transonic solution depends only on two conserved parameters out of 
three, namely, �̇�, 𝜖 and 𝑙 (Chakrabarti, 1990).

The equation of 𝑑∕𝑑𝑟 is numerically solved to find (𝑟). For 
certain combinations of flow parameters 𝜖 and 𝑙, the solutions show 
presence of two X-type critical points. For accretion or wind solution, a 
solution branch passing through the outer critical point and a solution 
branch passing through the inner critical point may be connected via a 
shock jump. The shock location is found by applying Rankine–Hugoniot 
condition. Fig.  1 shows radial variation of Mach number ∕𝑎𝑠 for 
the accretion and the wind solutions for a Kerr black hole with spin 
parameter 𝑎 = 0.99. Fig.  1(a) shows the example of the accretion 
solution. This is done for 𝜖 = 1.01 and 𝑙 = 2.073. Red solid line shows 
the solution branches passing through the outer critical point located 
at 𝑟 = 71.84 and the blue solid line shows the same passing through the 
inner critical point located at 𝑟 = 1.38. The shock location at 𝑟 = 3.6
is shown by the dashed line. The arrows indicate the solution branches 
followed by the accreting matter. Similarly, Fig.  1(b) shows an example 
of the wind solution. This is done for 𝜖 = 1.03 and 𝑙 = 2.1. Line styles 
are same as in Fig.  1(a). The outer critical point, the inner critical point 
and the shock locations are 21.26, 1.32 and 1.87 respectively. We are 
going to use these analytical solutions for benchmarking our code.
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Fig. 1. (a) shows the radial variation of Mach number ∕𝑎𝑠 for an accretion solution, whereas, (b) shows the same for a wind solution. In both the Figures, the arrows indicate 
the solution branches followed by the flow. See text for details.
3. GRHD: Basic equations and solution procedure

GRHD equations are derived from the following conservation laws:

∇𝜇 (𝜌𝑢𝜇) = 0 (8)

∇𝜇𝑇
𝜇𝜈 = 0 (9)

Here, ∇𝜇 represents the covariant derivative, 𝑢𝜇 is the four-velocity and 
𝑇 𝜇𝜈 is the stress–energy tensor. 𝑇 𝜇𝜈 = 𝜌ℎ𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 for ideal fluid 
with ℎ as the specific enthalpy given by ℎ = 1 + 𝛤

𝛤−1
𝑃
𝜌 , 𝛤 = 4∕3

being the adiabatic index and 𝑃  being the pressure. The first equation 
represents the conservation of baryon number and the second equation 
is the conservation of energy–momentum tensor.

Following {3+1} formalism (Banyuls et al., 1997; Font, 2008), we 
write the space–time metric 𝑔𝜇𝜈 in terms of lapse (𝛼), shift vector (𝛽𝑖) 
and the spatial metric (𝛾𝑖𝑗). After some algebraic manipulations, this set 
of equations can be written as a set of five partial differential equations 
(PDEs):

1
√

−𝑔

[

𝜕
√

𝛾𝐷
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(

√

−𝑔𝐷
(

𝑣𝑖 −
𝛽𝑖

𝛼

))

]

= 0 (10)

1
√

−𝑔

[

𝜕
√

𝛾𝑆𝑗

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(

√

−𝑔
(

𝑆𝑗

(

𝑣𝑖 −
𝛽𝑖

𝛼

)

+ 𝑃𝛿𝑖𝑗

))

]

=

𝑇 𝜇𝜈
( 𝜕𝑔𝜈𝑗
𝜕𝑥𝜇

− 𝛤 𝜆
𝜈𝜇𝑔𝜆𝑗

)

(11)

1
√

−𝑔

[

𝜕
√

𝛾𝜏
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(

√

−𝑔
(

𝜏
(

𝑣𝑖 −
𝛽𝑖

𝛼

)

+ 𝑃𝑣𝑖
))

]

=

𝛼
(

𝑇 𝜇0 𝜕ln𝛼
𝜕𝑥𝜇

− 𝑇 𝜇𝜈𝛤 0
𝜇𝜈

)

(12)

Here, √−𝑔 ≡ 𝑑𝑒𝑡(𝑔𝜇𝜈 ) and 
√

𝛾 ≡ 𝑑𝑒𝑡(𝛾𝑖𝑗 ), and these are connected by 
√

−𝑔 = 𝛼
√

𝛾. We denote the set of five-component vector 𝑈 =
(

𝐷,𝑆𝑗 , 𝜏
)

as vector of conserved variables and can be expressed in terms of vector 
of primitive variables 𝑉 =

(

𝜌, 𝑣𝑖, 𝑃
) as follows:

𝐷 = 𝜌𝑊 , 𝑆𝑗 = 𝜌ℎ𝑊 2𝑣𝑗 , 𝜏 = 𝜌ℎ𝑊 2 − 𝑃 −𝐷.

Here, 𝑊  is the Lorentz factor given by 𝑊 = 1∕
√

1 − 𝑣𝑖𝑣𝑖 = 𝛼𝑢𝑡. 𝑣𝑖
are the components of three-velocity given as 𝑣𝑖 = 𝑢𝑖

𝛼𝑢𝑡 + 𝛽𝑖

𝛼  and the 
co-variant counterpart can be calculated as 𝑣𝑗 = 𝛾𝑖𝑗𝑣𝑖.

The above set of PDEs is further written in integral form and subse-
quently discretized on a given mesh (Banyuls et al., 1997; Font, 2008). 
The resulting discretized equations on a spherical mesh constructed us-
ing Boyer–Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙) (Boyer and Lindquist, 1967) 
are solved using finite volume method. For our present calculations, we 
use the following form of the Kerr space–time metric:

𝑔𝜇𝜈 =

⎡

⎢

⎢

⎢

⎢

−(1 − 2𝑟
𝜎 ) 0 0 − 2𝑎𝑟 sin2 𝜃

𝜎
0 𝜎

𝛴 0 0
0 0 𝜎 0

2𝑎𝑟 sin2 𝜃 2 2 2𝑟𝑎2 sin2 𝜃 2

⎤

⎥

⎥

⎥

⎥

,

⎣− 𝜎 0 0 (𝑟 + 𝑎 + 𝜎 ) sin 𝜃⎦

3 
where, 𝜎 = 𝑟2 + 𝑎2 cos2 𝜃 and 𝛴 = 𝑟2 − 2𝑟+ 𝑎2. With these notations, the 
lapse 𝛼 and shift 𝛽𝑖 functions are as follows:

𝛼 =

√

𝜎𝛴
(𝑟2 + 𝑎2)𝜎 + 2𝑟𝑎2 sin2 𝜃

,

𝛽𝑟 = 𝛽𝜃 = 0, 𝛽𝜙 = − 2𝑎𝑟
(𝑟2 + 𝑎2)𝜎 + 2𝑟𝑎2 sin2 𝜃

.

Also, the determinant of the metric is
√

−𝑔 = 𝜎 sin 𝜃∕𝛼

This hydrodynamics simulation code is an extension of our non-GR 
code used in a previous work (Garain and Kim, 2023). We improve 
several subroutines suitably to incorporate general relativistic effects. 
For spatial reconstruction, we have used second order accurate van Leer 
slope limiter following Mignone (2014). We perform reconstruction on 
vector (𝜌,𝑊 𝑣𝑖, 𝑃

)

, instead of primitive variable vector 𝑉 , since the 
reconstruction on 𝑊 𝑣𝑖 ensures sub-luminal reconstructed profile of 𝑣𝑖
inside a zone (Balsara and Kim, 2016). We have provisions for HLL and 
LLF Riemann solvers for calculating the interfacial fluxes. For all the 
presented results, we use HLL Riemann solver. Second-order accurate 
strong stability preserving Runge–Kutta(RK) time integration is used 
for time advancement. One of the non-trivial step in GRHD is the 
conserved-to-primitive conversion as it requires a non-linear equation 
solution employing a root solver (e.g., Newton–Raphson). We have 
implemented two methods following Mignone and Bodo (2005) and 
Del Zanna and Bucciantini (2002). For our calculations, we prefer the 
method of Del Zanna and Bucciantini (2002). It may happen that the 
root solver does not converge for a few zones after the time-update step 
and for such zones, we use the previous time-step solution as it is al-
ready saved in a RK type time-update. The timestep 𝑑𝑡 is calculated fol-
lowing standard Courant–Friedrichs–Lewy (CFL) condition (LeVeque, 
2002; Toro, 2009)

𝑑𝑡 = 𝐶CFL
1

𝜆𝑟
𝑑𝑟 +

𝜆𝜃
𝑟𝑑𝜃 + 𝜆𝜙

𝑟 sin 𝜃𝑑𝜙

,

where, 𝜆𝑖 is maximum characteristic speed in 𝑖th direction and 𝐶CFL is 
the CFL number. For all the runs, we use 𝐶C𝐹𝐿 = 0.9. For one- or two-
dimensional simulations, contribution from the corresponding inactive 
dimension(s) is switched off.

4. Results

In this section, we present results of a few standard test problems 
validating our implementation. Later in this section, we present results 
of multi-dimensional simulation for sub-Keplerian advective accretion 
disk.

4.1. Accuracy analysis using two-dimensional equilibrium torus

Equilibrium torus is a hydrostatic equilibrium solution of the above 
mentioned GRHD equations. The solution results in a  geometrically 
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Fig. 2. (a) shows the density distribution inside the thick disk at the final time 𝑡 = 100
for the case with spin 𝑎 = 0. The disk center is located around 9.3. (b) shows the same 
at 𝑡 = 100 for the case with spin 𝑎 = 0.99. The disk center is located around 1.94.

thick disk around a gravitating source and the matter is held at its 
position because of the balance between the inward gravitational pull 
and the combined effect of outward centrifugal and pressure gradient 
forces. General procedure for the construction of such disks is given 
in many papers, e.g., Abramowicz et al. (1978), Chakrabarti (1985), 
Font and Daigne (2002) etc. In this work, we consider a constant an-
gular momentum disk and calculate the density, pressure and velocity 
distributions following the analytical calculations given in the above 
references. Next, we initialize our computational domain with these 
distributions and run our simulation for some time. Since this is a 
time-steady solution, we expect the values of these variables to remain 
same at all positions. However, due to inherent errors of the numerical 
solution scheme, the numerical solution is expected to develop error.

We conduct several two dimensional (𝑟, 𝜃) simulations of such thick 
disk around black holes with different spin parameters. Here, we show 
results for two cases, (1) with spin parameter 𝑎 = 0 and (2) with 𝑎 =
0.99. In our simulations, we maintain the initial state of the solutions 
at the ghost zones of both the radial boundaries throughout the simu-
lations. Such fixed boundary conditions have been used previously for 
global accuracy convergence demonstrations (Mignone, 2014; Fambri 
et al., 2018; Balsara et al., 2018, 2020). On the 𝜃 boundaries, we use 
reflection boundary condition.

For case (1), we choose the constant specific angular momentum to 
be 𝑙 = 3.9. This disk has a cusp at around 4.3 and the disk center is lo-
cated around 9.3. We use inner edge of the disk at 4.5 while calculating 
the fluid variables so that the disk does not fill up the Roche lobe. For 
accuracy analysis, the simulations are run on varying grid sizes ranging 
from [32 × 45] to [512 × 720] on a 𝑟− 𝜃 domain [7:15] × [𝜋/4:3𝜋/4]. 
The disk center is located inside our computational domain. Fig.  2(a) 
shows the density distribution for this case at the final time 𝑡 = 100. 
This result is drawn for the simulation with grid size [128 × 180]. Fig. 
3(a) shows the result of the accuracy analysis in the density variable. 
Purple line shows the convergence result for 𝐿1 error while green line 
shows the same for 𝐿𝑖𝑛𝑓  error. The reference slope is also provided for 
comparison.

For case (2), we choose 𝑙 = 2.19. This disk has a cusp at around 1.22 
and the disk center is located around 1.94. We use inner edge of the 
disk at 1.22 for this case. The simulations are run in the 𝑟, 𝜃 domain 
[1.45:4.45] × [𝜋/4:3𝜋/4] on grid cells [30 × 30] to [480 × 480]. Fig. 
2(b) shows the density distribution for this case at the final time 𝑡 = 100. 
This result is drawn for the simulation with grid size [120 × 120]. Fig. 
3(b) shows the result of the accuracy analysis in the density variable. 
Purple line shows the convergence result for 𝐿1 error while green line 
shows the same for 𝐿𝑖𝑛𝑓  error. The reference slope is also provided for 
comparison.

4.2. Shock in one-dimensional advective flow

Here we demonstrate our code’s capability to reproduce the steady 
state advective flow solutions having a shock. First, we compare the an-
alytical solution of a constant, low-angular momentum (sub-Keplerian) 
4 
accretion flow onto a black hole with the numerically simulated one. 
Next, we perform similar comparison for a wind solution.

Sub-Keplerian accretion solution connects infinity to the black hole 
horizon. The subsonic matter at far away (infinite) distance accelerates 
to supersonic speed at a finite distance (sonic point) from black hole 
before it reaches the black hole horizon. As discussed in Section 2, 
if the flow specific energy (𝜖) and specific angular momentum (𝑙) fall 
within certain parameter space, the flow may pass through a shock after 
crossing the sonic point. In such case, the matter accelerates soon to 
become supersonic again at certain radius (inner sonic point) before 
reaching the horizon.

For our comparison, we choose flow parameters such that the 
solution contains a shock. Theoretically, solution branches passing 
through the outer and the inner sonic points have different entropies
(Chakrabarti, 1989a): solution through the inner sonic point has higher 
entropy than that through the outer one. Thus, thermodynamically, as 
the matter approaches the black hole, it prefers to follow the solution 
through the inner sonic point. However, note from Fig.  1(a) that the 
solution through the inner sonic point (blue solid line) does not extend 
up to infinite distance. Thus, the matter coming from infinite distance 
initially follows the solution passing through the outer sonic point. 
However, when the matter arrives sufficiently close to the black hole so 
that solution through inner sonic point is available, it makes a transition 
to this solution. The required excess entropy is produced at the shock 
and that allows matter to jump from the branch passing through 
the outer sonic point to the branch passing through the inner sonic 
point. In a realistic three-dimensional flow, the matter bouncing off 
the centrifugal barrier collides with the incoming matter and makes the 
flow turbulent. This generates the required excess entropy (Chakrabarti 
and Molteni, 1993).

Shocks in an accretion flow can form at a few hundreds to only 
a few 𝑟𝑔 distance depending on (𝜖, 𝑙) pair. Capturing a shock very 
close a black hole is one of the stringent tests. In Fig.  4(a), we show 
that our simulation code can capture a shock at 𝑟 = 3.5. Radial 
variation of Mach number is shown in this plot. We see that the 
shock is resolved within one grid point. This solution corresponds to 
𝜖 = 1.01 and 𝑙 = 2.073. Solid line shows the analytical solution 
(solution marked by arrows in Fig.  1(a)) and the crosses are the 
numerically simulated solution. This simulation is carried out using 300 
logarithmically binned grid cells inside the domain [1.2:80]. Black hole 
spin is assumed to be 𝑎 = 0.99. We use outflow boundary condition 
at the inner edge and inflow boundary condition at the outer edge. 
We use two ghost cells for our computation. The centroids of these 
cells are located at 80.566 and 81.702. As the inflow boundary, we 
maintain 𝑉 = (1, 7.303𝐸 − 2, 0, 3.153𝐸 − 4, 4.9089𝐸 − 3) at the first cell 
and 𝑉 = (0.985, 7.213𝐸 − 2, 0, 3.067𝐸 − 4, 4.808𝐸 − 3) at the second cell 
throughout the simulation. Initially, the computation domain is filled 
with static matter with 𝜌 = 𝜌f loor = 10−8 and 𝑃 = 𝑃f loor = 𝑎2𝑠 ∗ 𝜌f loor∕𝛾
where 𝑎𝑠 = 0.0802 is the sound speed at the outer radial boundary. 
𝛾 = 4∕3 is assumed for this run. Thus, as the simulation is started, 
matter rushes towards the black hole and within a few hundred 𝑟𝑔∕𝑐
time, simulation domain is filled up with matter that corresponds to 
the analytical solution passing through the outer sonic point. Since one-
dimensional flow does not develop turbulence, this solution does not 
pass through the shock and the inner sonic point. Thus, to produce 
shock in a one-dimensional flow, we need to momentarily apply some 
perturbation such that the flow acquires sufficient additional entropy 
to pass through the inner sonic point (Chakrabarti and Molteni, 1993). 
Once the flow passes through the inner sonic point, it automatically 
develops a shock which ultimately settles down close to the theoreti-
cally predicted location. In our simulation, this perturbation is applied 
at the inflow boundary: we momentarily (for a duration of 30 𝑟𝑔∕𝑐) 
increase the pressure by a factor of 9 in the two outer radial boundary 
ghost cells at around time 𝑡 = 4000. This perturbation is advected with 
the flow and makes it pass through the inner sonic point and a stable 
solution passing through the shock is developed by time 𝑡 = 7000. We 
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Fig. 3. Accuracy demonstration for torus problem (a) shows the 𝐿1 and 𝐿𝑖𝑛𝑓  error convergence results for the case with spin 𝑎 = 0. (b) shows the same for the case with spin 
𝑎 = 0.99.
Fig. 4. (a) shows the shock in accretion flow solution, whereas, (b) shows the same in wind solution. See text for details.
run the simulation till a stopping time of 𝑡 = 50 000 just to ensure that it 
is actually a steady state. Analytical calculation provides the location of 
outer sonic point, shock and inner sonic points at 71.84, 3.6 and 1.38, 
respectively. Our numerical calculation captures the outer and inner 
sonic points exactly at these locations as can be seen in Fig.  4(a). The 
numerical calculation finds the shock at 3.5.

Just like the accretion flow solution can pass through a shock, a 
wind solution can also pass through a shock close to the black hole if 
the 𝜖 and 𝑙 values for the solution are chosen within a certain range. 
Fig.  4(b) shows the simulation of such a wind solution. Radial variation 
of Mach number is shown in this plot. This solution corresponds to 
𝜖 = 1.03 and 𝑙 = 2.1. Solid line shows the analytical solution (solution 
marked by arrows in Fig.  1(b)) and the crosses are the numerically 
simulated solution. This simulation is carried out using 200 logarith-
mically binned grid cells inside the domain [1.28:30]. Black hole spin 
is taken to be 𝑎 = 0.99 for this case. For simulating wind solution, 
matter is launched from very close to the black hole and it flies off 
to infinite distant. Thus, we use inflow boundary condition at the inner 
radial boundary and outflow boundary condition at the outer radial 
boundary. We use two ghost cells for our computation. The centroids 
of the two inner ghost cells are located at around 𝑟 = 1.25 and 𝑟 = 1.27. 
As the inflow boundary, we maintain 𝑉 = (1.317, 0.0305, 0, 0.2725, 0.187)
in the first cell and 𝑉 = (1, 0.0384, 0, 0.2756, 0.1297) in the second cell 
throughout the simulation. As the initial condition, we fill up part of the 
simulation domain [1.28: 𝑟𝑏] with analytical solutions passing through 
the inner sonic point and the rest [𝑟𝑏:30] with the analytical solution 
passing through the outer sonic point. Thus, the initial state has a shock 
discontinuity at 𝑟𝑏. For result shown in Fig.  4(b) , we use 𝑟𝑏 = 3. 
With this initial state, we start the simulation and within time around 
𝑡 = 2000, the shock discontinuity settles down at a radius 𝑟 = 1.87
which is very close to the theoretically predicted shock location = 1.82. 
Note that for this case, the shock is inside the ergosphere. For our 
code, we find the solution immediately after the shock is oscillatory. 
Possibly, this can be avoided by using higher order spatially accurate 
reconstruction. We run the simulation till a stopping time of 𝑡 = 10 000
just to ensure that it is actually a steady state. We have simulated 
different cases with different values of 𝑟𝑏 and ensure that this steady 
state solution is independent of 𝑟  value.
𝑏

5 
4.3. Two-dimensional bondi accretion flow

This test problem is adapted from Kim et al. (2019). In this problem, 
we show the effect of spacetime dragging close to a rotating black hole. 
Because of this dragging, a spherically symmetric accretion configura-
tion onto a rotating black hole develops axisymmetry close to the black 
hole (see also Aguayo-Ortiz et al., 2021).

This simulation is performed on a 𝑟 − 𝜃 computation domain
[1.35:200] × [0: 𝜋] using 300 × 180 grid cells. In the 𝑟 direction, we 
use logarithmic binning and in the 𝜃 direction, grids are equispaced. 
Spin parameter of the black hole is assumed to be 𝑎 = 0.99. The 
boundary conditions are same as in Kim et al. (2019). Matter enters 
simulation domain with  = 0.0229 and 𝑎𝑠 = 0.0805 at 𝑟out = 200. This 
corresponds to 𝜖 = 1.015 and 𝑙 = 0. At the inner radial boundary, we 
use zero gradient outflow boundary condition. At the 𝜃 boundaries, we 
use reflecting boundary conditions. The simulation is run till a stopping 
time of 20000. By this time, a steady state solution has developed.

In this test problem, matter is injected into the simulation domain 
spherically symmetrically. In the absence of black hole rotation, such 
accretion solution remains spherically symmetric by the time it crosses 
the horizon. However, a rotating black hole drags the spacetime around 
it and hence breaks the spherical symmetry and makes the accretion 
solution axisymmetric. Such axisymmetry can be visualized in the fluid 
variables such as density distribution. To quantify this, we plot the 
distribution of (𝜌(𝑟, 𝜃) − 𝜌eq(𝑟, 𝜋∕2))∕𝜌eq(𝑟, 𝜋∕2), where, 𝜌eq(𝑟, 𝜋∕2) is the 
density at (𝑟, 𝜃 = 𝜋∕2), in the inner part of the simulation domain. 
Colors in Fig.  5(a) show this quantity. We can clearly see that, at a 
given radius 𝑟, 𝜌 towards the polar region is less than 𝜌 at the equator. 
The maximum difference between the density values is nearly 14% for 
this simulation. We also trace the density iso-contours on the 𝑟 − 𝜃
plane in Fig.  5(b). On the 𝑥-axis, we plot polar angle 𝜃 and on the 𝑦-
axis, we plot the radial coordinate 𝑟 normalized by 𝑟 on the axis for a 
given density value. Contours are drawn for density values 50, 100, 
150, 200 and 250 (from bottom to top). This plot shows that same 
density value appears at larger 𝑟 on the equator than on the poles. For 
example, highest density value 250 appears at 7.8% higher 𝑟 on the 
equator than on the poles. This Fig. can be compared with Fig. 2(b) 
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Fig. 5. (a) shows the distribution of relative density w.r.t equatorial density at final time 𝑡 = 20 000, (b) shows the radial coordinate 𝑟 normalized by 𝑟 on axis for a given density 
value as a function of polar angle, (c) shows the distribution of relative 𝛺 w.r.t equatorial 𝛺. See text for details.
Fig. 6. Time-evolution of density distribution on a logarithmic scale for sub-Keplerian accretion disk simulation. Arrows show the velocity field.
of Kim et al. (2019) who obtained a value slightly higher than 7% 
(less than our value of 7.8%). This is caused by our choice of higher 
black hole spin 𝑎 = 0.99 compared to their 𝑎 = 0.95. Frame dragging 
induces axisymmetric rotation 𝛺(𝑟, 𝜃) = 𝑢𝜙∕𝑢𝑡 although specific angular 
momentum 𝑙 = −𝑢𝜙∕𝑢𝑡 is zero for this flow. Fig.  5(c) shows the 
distribution of (𝛺(𝑟, 𝜃) −𝛺eq(𝑟, 𝜋∕2))∕𝛺eq(𝑟, 𝜋∕2), as in Fig.  5(a). We see 
that 𝛺 is lesser towards the pole.

4.4. Two-dimensional sub-keplerian accretion flow

This is the multi-dimensional extension of the one-dimensional 
advective flow discussed in Section 2. In multi-dimensional simulations, 
one gets an opportunity to study the vertical structure of the geomet-
rically thick sub-Keplerian advective flow. The simulation procedure is 
nearly same as the above mentioned two-dimensional Bondi accretion 
flow. Only difference is at the implementation of the outer radial 
boundary condition. Instead of spherically symmetric inflow at the 
outer boundary, we now inject matter axi-symmetrically. Additionally, 
to allow outflow from the accretion disk through the outer boundary, 
we restrict matter injection within −10◦ ≤ (𝜃 − 90◦) ≤ 10◦ and apply 
zero gradient outflow boundary condition otherwise.

This simulation has been performed on a 𝑟−𝜃 domain [1.35:100] ×
[0: 𝜋] using 200 × 180 grid cells. In the radial direction, we use 
logarithmic binning and in the 𝜃 direction, we use uniform mesh. Black 
hole spin is assumed to be 𝑎 = 0.99. Matter enters simulation domain 
with  = 0.0666 and 𝑎𝑠 = 0.0647 at 𝑟out = 100. This corresponds to 
𝜖 = 1.005 and 𝑙 = 2.05. This simulation has been run till a stopping 
time of 20000. Solution has reached a time-steady state by this time.

Fig.  6 shows the sequence of snapshots at progressing time. Colors 
show 𝑙𝑜𝑔 𝜌 and arrows show the direction of velocity vectors (𝑣𝑟, 𝑣𝜃). 
10

6 
Fig. 7. Radial variation of the Mach number along the equator at the end of the 
sub-Keplerian accretion flow simulation.

Length of an arrow is proportional to the logarithm of its magnitude. 
Timestep is marked on top of each Figure. Fig.  6(a) shows a transient 
state when the matter rushes towards the black hole sitting at the origin 
through nearly vacuum. Fig.  6(b), again a transient state, shows the 
building of centrifugal force supported boundary layer. The boundary 
layer can be identified by tracing the density jump as we move verti-
cally away from the equator. Initially, this boundary layer expands in 
the radial direction and finally settles down. By the time the solution 
reaches the state of Fig.  6(c), solutions becomes steady and this state 
continues till the end of simulation in Fig.  6(d). The evolution is very 
much consistent with the earlier simulations with non-rotating black 
holes (e.g.,Kim et al., 2017b) as well as rotating black holes (e.g., Kim 
et al., 2019) with lower spin (𝑎 = 0.95) than the present one (𝑎 = 0.99).
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Fig.  7 shows the radial variation of the vertically averaged Mach 
number at the final time. Simple averaging of the Mach number values 
has been done over 4 grid cells above and below the equator. Clearly, 
the accretion flow develops a shock (supersonic to subsonic transition) 
around 𝑟 = 10. Additionally, we find another shock between 𝑟 = 2 − 3
for this case. Presence of such an inner shock in multi-dimensional 
simulations has been reported earlier for non-rotating black holes Giri 
et al., 2010; Lee et al., 2011 where simulations are carried out using 
pseudo-Newtonian (Paczyńsky and Wiita, 1980) potential. However, 
for a rotating black hole and using a truly GRHD simulation, we find 
such an inner shock extremely close to the horizon. Though, as reported 
in Cruz-Osorio et al. (2012), placement of inner boundary outside 
of event horizon may affect the flow dynamics and the inner shock 
formation. More elaborated analysis of such inner shocks and their 
observational consequences will be discussed in future works.

5. Summary and conclusions

In this paper, we present a general relativistic hydrodynamics 
(GRHD) solver. Our aim is to use the said solver for simulating an 
advective accretion disk configuration that mimics mass inflow from 
far out rather than starting from an equilibrium torus. In this solver, we 
solve the GRHD equations using finite volume method on a discretized 
mesh inside a given computational domain. This method incorporates 
high resolution shock capturing schemes.

We have demonstrated that our presently developed GRHD code 
works for Kerr spacetime, is globally second order accurate and per-
forms robustly in multi-dimensions. For demonstrating global accuracy, 
we compute the numerical errors using a hydrostatic equilibrium, 
geometrically thick disk configuration and find the errors converge 
with second order accuracy. We also demonstrate that our scheme can 
correctly capture the analytically predicted accretion and wind shock 
solutions around a rotating black hole. In both the cases, shocks are 
resolved within one or two grid points. Specifically, we demonstrate 
that our solver can capture the shocks extremely close to the black 
hole (even inside the ergosphere). Next, we demonstrate the effects 
of spacetime dragging in the close vicinity of an extremely rotating 
black hole (with spin parameter 𝑎 = 0.99). We show that a spherically 
symmetric accretion becomes axi-symmetric as the matter approaches 
the black hole. Finally, we show an example where we simulate a 
geometrically thick sub-Keplerian accretion disk. We allow rotating 
matter to enter the simulation domain through a part of the outer 
radial boundary (close to the equatorial region) and also allow outflow 
through rest of the outer radial boundary (close to the poles). The 
accreting matter rushes to the black hole through nearly vacuum and 
self-consistently forms a shock due to centrifugal barrier. The post-
shock matter forms a thick disk. The present solution shows formation 
of two shocks close to the black hole. In subsequent works, we shall 
explore these thick disk solutions in great details and investigate their 
radiative properties.
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