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Abstract
Strategies for sustaining cooperation and preventing exploitation by selfish agents in repeated
games have mostly been restricted to Markovian strategies where the response of an agent depends
on the actions in the previous round. Such strategies are characterized by lack of learning.
However, learning from accumulated evidence over time and using the evidence to dynamically
update our response is a key feature of living organisms. Bayesian inference provides a framework
for such evidence-based learning mechanisms. It is therefore imperative to understand how
strategies based on Bayesian learning fare in repeated games with Markovian strategies. Here, we
consider a scenario where the Bayesian player uses the accumulated evidence of the opponent’s
actions over several rounds to continuously update her belief about the reactive opponent’s
strategy. The Bayesian player can then act on her inferred belief in different ways. By studying
repeated Prisoner’s dilemma games with such Bayesian inferential strategies, both in infinite and
finite populations, we identify the conditions under which such strategies can be evolutionarily
stable. We find that a Bayesian strategy that is less altruistic than the inferred belief about the
opponent’s strategy can outperform a larger set of reactive strategies, whereas one that is more
generous than the inferred belief is more successful when the benefit-to-cost ratio of mutual
cooperation is high. Our analysis reveals how learning the opponent’s strategy through Bayesian
inference, as opposed to utility maximization, can be beneficial in the long run, in preventing
exploitation and eventual invasion by reactive strategies.

1. Introduction

Every organism, from a microbe to a human, reacts to its environment to various degrees of complexity
depending on how much cognitively capable it is. Some learn to react to reap more benefit compared to the
others. Such optimal learning is selected over the generations, and finally the progenies are not observed to
be spending almost any time in learning to optimally react to the environment; they react instinctively: What
was a learnt strategy for the ancestors, is now a genetically-hardwired instinct for the selected
descendants [1–7].

Specific reaction to a situation is contingent on the information about the situation that the organism
gathers. In more formal terms, the organism develops a belief about the state of the environment and its
strategy on how to react is based on this belief which can be expressed as a probability distribution over the
possible states of the environment. Note that, even before observing the situation, the organism has some
belief (called prior belief) that transforms to an updated belief (called posterior belief) in the light of new
information. How a posterior belief emerges from a prior belief is dependent on the exact nature of the
update rule.
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The optimal update rule itself needs to be learnt and, if it is evolutionarily beneficial, then it would be
passed on to the progenies. It has been argued that Bayesian updating [8, 9] is a requirement of evolutionary
optimality. While Bayesian updating is not the only form of updating seen in the natural world, there are
plenty of examples [10, 11] where the belief updating occurs in accordance with Bayes rule. In passing, it is
worth pointing out that the Bayesian updating is a rational player’s normative choice since the player’s
actions should be probabilistically coherent so as not to incur losses [12, 13] which rational players always
look to avoid. Moreover, the evolutionary basis of the Bayesian rationality and the evolution of
Bayes-rational agents has also been put forward [14].

Of course, the simplest strategy for reacting is to randomly adopt an action (out of a set of all possible
implementable actions) even without observing the situation at hand. A more sophisticated strategy would
involve choosing an action with some probability, based on knowledge about the particular state of the
environment in the immediate past. This may be called a reactive strategy [15, 16]. In the context of
evolutionary games [17, 18], the reactive strategies are most often encountered in the study of evolution of
cooperation [15, 19] which seeks to address the question of how altruistic behaviour can be sustained [20]
despite involving a cost which makes the altruistic phenotype less suitable for selection over its selfish
counterpart. The environment of a player playing an evolutionary game is the entire population consisting of
all other players she can interact with.

A lot of work carried out over the last three decades have shed light on this problem by identifying the
critical factors that can facilitate not just the survival but also the dominance of cooperators in an evolving
population. A vast amount of literature on evolutionary game theory have focused on either reactive and
memory-one strategies [21–26], population structure [27–32], player’s reputation together with social
norms [33–35] and strategy update based on the pairwise comparison rule [36–38] to understand the
evolution of cooperation in diverse scenarios. Most of the work in this domain can be broadly classified
under the categories of direct and indirect reciprocity [39–48] in either well-mixed or structured
populations. Such models focus on identifying strategies that depend only on the strategy of the interacting
partner or the strategy of both the focal player and her interacting partner (in the case of memory-one
strategies) in the last round. Even when strategy update is carried out using the pairwise comparison model,
preferential selection of strategies is based on a single factor, namely payoff of a randomly selected neighbour.
Such models constitute a very narrow set of possible strategies that players may employ in deciding whether
to be altruistic or selfish. More importantly, these models are characterized by lack of learning based on new
evidence that results from repeated interactions, since the strategy-update rule is fixed at the outset.

In view of the above, it is quite natural that one takes up the endeavour of not only considering different
strategy update rules [49–55], that are not just dependent on the payoff [51], but also allow for the
possibility that individuals may learn the appropriate rule (model for strategy update) from the experience
gained through repeated interactions. In other words, a more complex strategy could involve adopting a
strategy contingent on the belief about environmental state of player. This belief could further be continually
updated based on the actual sequence of states observed over the past times till the true frequencies of
environmental states is learnt. Such a strategy may be called a learning strategy.

If the learning strategy specifically calls for Bayes’ updating rule, it may be called a Bayesian strategy. It is
natural to ponder whether a Bayesian strategy is evolutionary optimal compared to a reactive strategy. To the
best of our knowledge, this important question has not yet been investigated in the context of evolutionary
games (see, however, [50]). Unlike pairwise-comparison or reinforcement learning mechanisms [56–63] like
Bush-Mosteller [52, 64–69], the Bayesian strategy does not attempt to optimise the received payoff in every
round but attempts to infer the reactive strategy of her opponent based on accumulating knowledge of the
opponent’s actions. In the process of doing so, the accumulated payoff of the Bayesian player in the long term
can exceed the payoff of the opponent using a reactive strategy, under certain circumstances.

Within the paradigm of repeated games [15, 70–72], we consider a player employing a Bayesian strategy
against an opponent, employing an unknown but fixed reactive strategy. The Bayesian player then tries to
infer the reactive strategy (i.e. the probabilities p(r) and q(r) of cooperation of the reactive player when her
opponent cooperated (played C) and defected (played D) respectively in the last round). The Bayesian player
uses the action of her reactive interacting partner in each round to update her own beliefs about the
(p(r),q(r)) values of the partner’s reactive strategy using Bayes’ rule. A schematic showing the belief update
process of the Bayesian player is shown in figure 1. She then utilizes her updated belief about the interacting
player’s (p(r),q(r)) values to tune her own response in three different ways. In the first scenario, we assume
that the Bayesian player adopts the maximum (pmax,qmax) of her updated belief about the (p(r),q(r)) values of
the reactive opponent as her own strategy in the next round. We call such a strategy Bayesian tit-for-tat
(BTFT). This ability, called probability matching, of an organism to choose a behaviour with a probability
equal to the Bayesian-estimated maximum a posteriori (MAP) probability has been well-documented in
several animal behaviour experiments [10, 11, 73–77]. In an alternative scenario, the Bayesian player adopts a
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Figure 1. Schematic diagram showing how a Bayesian player updates her belief about an opponent’s reactive strategy (p(r), q(r))
that is unknown to her. The Bayesian player’s objective is to infer the strategy of the reactive player from the latter’s actions over
several rounds. The Bayesian player is depicted in green and the reactive opponent is denoted by emoticon. In the first round, the
reactive player’s action is C while the Bayesian player’s action is D. In response, the reactive player defects (D) in round 2 (with
probability (1− q(r))). The Bayesian player uses the reactive opponent’s action at the end of round 1 as evidence to update her
belief (p ′

2 ,q
′
2 ) about the reactive opponent’s strategy using Bayes rule. The Bayesian player then uses her updated belief (p ′

2 ,q
′
2 ) to

cooperate (C) with the reactive opponent (with probability p ′
2 in round 2). After round 2, where the reactive player defects, the

Bayesian player again uses Bayes rule to update her belief by determining the maximum (p ′
3 ,q

′
3 ) of a new posterior distribution

that uses the posterior distribution estimated at the end of round 1 as prior. She then uses this inferred belief to cooperate (C)
with the reactive opponent with probability q ′

3 in response to the reactive opponent’s action (D) in round 2. This updating
process continues over rounds (see section 2 for details) with the prior being updated to the posterior distribution at the
beginning of each round.

strategy that is less reciprocal than BTFT, i.e. she chooses to cooperate with a probability that is less than the
inferred probabilities of cooperation (pmax,qmax) of the BTFT player. In another alternative scenario, the
Bayesian player adopts a strategy that is more generous than BTFT, i.e. she chooses to cooperate with a
probability that ismore than the inferred probabilities of cooperation (pmax,qmax) of the BTFT player. The
comparative effects of reciprocity and generosity in the evolution of cooperation is a problem of interest for
the researchers of evolutionary game theory [78–81].

Under the Darwinian paradigm all the players adopt an action (or a probabilistic mixture of actions) that
makes the population evolutionarily resilient against invasion by a mutant with a different action. Such a
robust action is known as a evolutionarily stable strategy (ESS) [17, 82]. Here, we study a repeated two-player
game between a Bayesian player and a reactive player and ascertain the conditions for strategies to be ESS.
Our results show that the success of Bayesian strategies in preventing invasion by opponents with reactive
strategies depend on the manner in which the Bayesian player responds to her continuously updated belief
about the opponent’s reactive strategy.

2. Model

We consider a repeated two-player, two-action game where each player can play with a reactive strategy or a
Bayesian strategy. The two actions of the underlying game are taken as cooperation (C) and defection (D).
The reactive strategy is defined by (p(r), q(r), c1). Here p(r) and q(r) are the probabilities of cooperation in the
current round of the game given her opponent respectively cooperated and defected in the previous round,
while c1 is the reactive player’s initial (first round) probability of cooperation.

A player with a Bayesian strategy attempts to infer the true probabilities of cooperation (p(r) and q(r)) of
the opponent by taking into account the opponent’s actions over several rounds of the game. In order to do
so, the Bayesian player has to continuously update her belief about the reactive strategy on the basis of
evidence obtained in the form of action (A ∈ {C,D}) of the opponent in each round. This update is done
using Bayes’ rule which requires a prior probability distribution of the beliefs of the Bayesian inferential
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player about the reactive strategy adopted by her opponent. We assume a uniform prior distribution P1(p,q)
and at the end of each round n the Bayesian player updates her belief (p,q) ∈ [0,1] × [0,1] about her
opponent’s strategy from the estimated posterior probability distribution,

Pn (p,q|An) =
P(An|p,q)Pn (p,q)∑1

0

∑1
0P(An|p,q)Pn (p,q)

. (1)

The subscript n alludes to the quantities estimated in the nth round.
The Likelihood, P(An|p,q), is chosen to be

P(An|p,q) =

{
pc ′n−1 + q

(
1− c ′n−1

)
if An = C,

(1− p) c ′n−1 +(1− q)
(
1− c ′n−1

)
if An = D,

(2)

where c ′n is the probability of cooperation of the Bayesian player in nth round. Probabilities p and q are
sampled from the set of all possible values lying between 0 and 1. That this choice of likelihood function is
apposite is clear from the fact [16, 71] that a reactive player with p(r) = p and q(r) = q plays action A in nth
round with probability given by equation (2) when the opponent’s cooperation probability is c ′n−1 in the
previous round. For round n= 1, the expression for likelihood requires specification of c ′0 for which we set
c ′0 = c ′1, the initial probability of cooperation of the Bayesian player.

The Bayesian player determines the global maximum (pmax
n ,qmax

n ), i.e. themaximum a posteriori (MAP)
of the updated posterior distribution Pn(p,q|An) at the end of nth round, which then constitutes her updated
belief about the true (p(r),q(r)) values of her reactive opponent. If the posterior distribution has multiple
maxima, the Bayesian player selects any of them at random. Subsequently, she uses a function of her updated
belief as her new strategy in the next round that is(

p ′
n+1,q

′
n+1

)
= ( f(pmax

n ,qmax
n ) ,g(pmax

n ,qmax
n )) . (3)

In this paper, we consider three possible functional forms of (f, g) as defined later.
Thus, the evolving strategy of the Bayesian player is determined by her belief (p,q) about the reactive

opponent’s strategy. This update is recursive; the posterior distribution calculated in the nth round becomes
the prior in the (n+ 1)th round, Pn+1(p,q) = Pn(p,q|An), An being the action of reactive player in the nth

round. Through this updating process, the Bayesian player eventually infers the reactive opponent’s true
strategy. Had the opponent also been a Bayesian player, even then the focal Bayesian player would implement
the Bayes’ rule as given above to update her strategy; even though the true belief about the opponent’s
strategy does not exists in such a interaction.

2.1. Strategies
The Bayesian player can adopt her strategy in many ways using her belief, but below we describe three
intuitive strategies, viz., Bayesian Tit-for-tat, non-reciprocal Bayesian Tit-for-tat, and generous Bayesian
Tit-for-tat.

Bayesian Tit-for-tat (BTFT): An obvious choice of a new strategy would be one where the Bayesian player
just adopts her updated belief as her new probabilities of cooperation in the next round. Mathematically,

p ′
n+1 = f(pmax

n ,qmax
n )≡ pmax

n , (4a)

q ′
n+1 = g(pmax

n ,qmax
n )≡ qmax

n . (4b)

We therefore call such a strategy the Bayesian TFT (BTFT) strategy.
Non-reciprocal Bayesian Tit-for-tat (NBTFT): In some cases, the player may be less cooperative than

suggested by her own Bayesian updated belief (p,q) about her opponent’s strategy, due to her own
self-interest. We call such a class of strategies non-reciprocal BTFT (NBTFT) strategies. If the parameter ν
measures the extent to which the Bayesian player is less cooperative than a BTFT player, then her updated
strategy in the subsequent round becomes

p ′
n+1 = f(pmax

n ,qmax
n )≡ pmax

n (1− ν) , (5a)

q ′
n+1 = g(pmax

n ,qmax
n )≡ qmax

n (1− ν) , (5b)

where ν ∈ [0,1]. If ν= 0, then the player is reciprocal, and we get back the BTFT strategy. If ν= 1, the player
is maximally non-reciprocal, which amounts to the Always-defect (ALLD) strategy.

Generous Bayesian Tit-for-tat (GBTFT): On the other hand, the player may want to decide to defect less
than suggested by her belief about the opponent’s strategy. We call such a class of strategies Generous BTFT
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(GBTFT). If the generosity parameter γ measures the extent to which the Bayesian player is less selfish than a
BTFT player, then her updated probabilities of defection in the subsequent round are

1− p ′
n+1 = (1− γ)(1− pmax

n ) , (6a)

1− q ′
n+1 = (1− γ)(1− qmax

n ) , (6b)

where γ ∈ [0,1]. When γ= 0, the BTFT strategy is recovered. On the other hand, if γ= 1, the player is
maximally generous, which amounts to the Always-cooperate (ALLC) strategy.

2.2. Payoff
We consider a two-player–two-action game where the players have two choices: cooperate or defect. They
receive a reward R for mutual cooperation, whereas mutual defection yields the payoff P. If a player
cooperates and the other defects, then the cooperating player gets the payoff S, and the defecting player
receives the payoff T. Hence, the resulting payoff matrix can be expressed as

C D

U≡ C
D

[
R S
T P

]
In this game, the degree of cooperation is influenced by the strength of dilemma, which can be characterized
by two scaling parameters [83–86]: the strength of the gamble-intending dilemma, denoted as D ′

g ≡ T−R
R−P ,

and the strength of the risk-averting dilemma, denoted as D ′
r ≡ P−S

R−P . These two scaling parameters classify a
two-player game into four categories: Prisoner’s dilemma (PD), Snowdrift game, Stag Hunt, and Harmony
game. The game is PD when both the parameters are positive. In contrast, the game is Harmony if both are
negative. If D ′

g is positive but D
′
r is negative, the game is Hawk–Dove. On the other hand, if D ′

g is negative but
D ′

r is positive, then the game is Stag Hunt. Note that if both are equal and positive, the game is known as the
donor and recipient game (DR game)—a special form of PD game.

We consider here underlying game to be a DR game, conveniently characterized by two parameters [20,
87], b and c, as follows: If a player cooperates, she incurs a cost c and gets the benefit of either b (if the
opponent cooperates) or 0 (if the opponent defects). Whereas, if a player defects, she gets a benefit b without
incurring any cost when the opponent cooperates, but gets nothing when the opponent defects. For
convenience, we re-parameterise the resulting payoff matrix by dividing all payoff elements by c. The effective
payoff matrix, thus, is

C D

U≡ C
D

[
r− 1 −1
r 0

]
(7)

where r≡ b/c is benefit-to-cost ratio for cooperating. Here, the scaling parameters D ′
g = D ′

r > 0 when r> 1.
As is customary, the repeated PD game needs to satisfy two conditions—T> R> P> S and
2R> T+ S—which are automatically satisfied in the above form because r> 1.

The shadow of the future [88] is practically inevitable in repeated games and the standard way of
addressing this is to consider the payoff in every subsequent interaction to be discounted by a multiplicative
factor, δ ∈ [0,1], called the discount factor. Thus, the accumulated payoff of the player at the end of game,
i.e. when n= nf, is given by [16]

π
(
δ,nf

)
=

n=nf∑
n=1

unδ
n−1. (8)

Here un ∈ {r,−1, r− 1,0} is the payoff of the focal player in nth round. In all our simulations, nf is fixed at
nf = 700

As players in a population interact at random, a focal player can meet with either a reactive player or a
Bayesian player. Therefore, three distinct types of interaction are present in the population: reactive-reactive,
reactive-Bayesian, and Bayesian-Bayesian. Hence one can write the payoff matrix,

Reactive (R) Bayesian (B)

П≡ Reactive (R)
Bayesian (B)

[
πRR πRB

πBR πBB

]
(9)

to model the strategic competition between reactive and Bayesian strategies. To simplify our notations, we
suppress the arguments of function π (see equation (8)) wherever there is no ambiguity.
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Figure 2. Convergence of belief: Subplots (a) and (b) respectively exhibit the posterior distribution of the Bayesian player’s belief
about the reactive player’s strategy at the end of 50 rounds and 500 rounds, starting from a uniform prior. The black dot at the
intersection of the horizontal line and the vertical line, represents the true reactive strategy, viz., (0.8,0.3,0.5). The color bar
indicates the probability, P(p,q). The p− q space has been divided into 51 × 51 grid points.

3. Numerical method

In order to determine how a Bayesian strategy fares against an arbitrary reactive strategy, we allow the
Bayesian player to play a repeated PD game against a large set of reactive strategies uniformly spread across
the entire reactive strategy (p-q) space. The p-q space is uniformly divided into 51 × 51 grid points. We
numerically follow games played at every grid point. Three distinct kinds of interaction between the players
at a grid point are possible, depending on the nature of the interacting partners: reactive-reactive,
reactive-Bayesian, and Bayesian-Bayesian.

When the focal player’s strategy is reactive, i.e. (p(r),q(r), c1), we consider repeated games with
reactive-reactive and reactive-Bayesian interactions to determine the payoff to the focal reactive player. When
the focal player is Bayesian, games with both Bayesian-reactive and Bayesian-Bayesian interactions are
considered to determine the payoff to the focal Bayesian player. We use an uniform prior distribution at n= 1
represented by an 11 × 11 matrix where each matrix element is assigned equal probability. In other words, in
our simulations, p and q are respectively sampled in steps of 0.1 from the ranges 0⩽ p⩽ 1 and 0⩽ q⩽ 1.
The posterior distribution is then estimated at the end of each round using equation (1). Therefore, the
posterior distribution also becomes a distribution over 11 × 11 grid points. Figure 2 illustrates the
convergence of Bayesian player’s belief, indicated by the peak of posterior distribution, towards the true
reactive strategy. As expected, the convergence improves with the number of rounds. Each of the four types
of interactions is repeated over nf = 700 rounds to give the cumulative payoff for each pairwise interaction.
The final payoffs πRR(δ,nf), πRB(δ,nf), πBR(δ,nf), and πBB(δ,nf); shown in figure 3 are calculated by
averaging over 104 independent trials. Even though the time-evolution of the payoff is expected to be noisy,
averaging over 104 trials ensures smooth curves in figure 3 that appear to be devoid of any fluctuations.

In passing, we remark that in line with the central limit theorem, the standard deviation about any of the
average payoff elements is of the order σ/

√
104, where σ is the standard deviation of the independent

identical random payoffs. Since we have found that σ ∼ 1 implying σ/
√
104 ∼ 10−2. Hence, we round off the

average payoffs corresponding to each strategic interaction to the second place of decimal. Furthermore, we
have fixed c1 = 0.5 along the line of principle of insufficient reason [9]. We choose one value of δ very close
to unity (specifically, δ= 0.99) to somewhat negate the shadow of the future since, as we will see later, it
facilitates certain analytical estimations. To see the effect of the discount factor δ on our simulation results,
we compared results obtained for δ= 0.75 with those for δ= 0.99 see figures 4–7 and 9).

4. Results

Evidently, the reason behind the entire exercise of the aforementioned numerics is to calculate П (see
equation (9)) for play at various points of the reactive strategy space. The central idea of this paper is to use
these payoff matrices to ascertain the comparative efficiency of Bayesian strategy. To this end, one can
envisage an unstructured population of randomly matched players. The success of the Bayesian strategy
against any reactive strategy in a population is determined by the ability of the former to avoid being invaded
by mutant reactive strategy. Therefore, we determine the conditions under which either the Bayesian strategy
or the reactive strategy is an ESS and how those conditions are affected by the nature of the reactive strategy,
the nature of the update rule (BTFT, NBTFT, or GBTFT) adopted by the Bayesian strategy, the
benefit-to-cost ratio of cooperation and the discount factor (δ). In such an investigation, however, we must
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Figure 3. The variation of cumulative payoff (averaged over trials) with total number of rounds: Subplots (a), (b), (c) and (d)
correspond to the games where reactive strategy (p(r), q(r)) is equal to (0.2, 0.2), (0.5, 0.75), (0.2, 0.7), and (0.75, 0.75)
respectively. Red solid, green dashed, pink dotted, and blue dot-dashed lines respectively denote πRR(δ,nf), πRB(δ,nf), πBR(δ,nf),
and πBB(δ,nf). The cumulative payoffs are averaged over 10 000 trials and computed for r= 2. δ= 0.99 in all four cases.

distinguish between the cases of finite and infinite populations: While in the former case, a single mutant
may invade the host monomorphic population; in the latter case, an infinitesimal fraction of mutants is
required to invade a non-ESS host population strategy. Accordingly, the definition of ESS varies in finite
population [89] and infinite population [17].

Therefore, in what follows, we succinctly present our results using, what we term as, ESS phase diagram.
An ESS phase diagram is a pictorial representation showing which strategy is an ESS in which region of the
reactive strategy space. The regions with Bayesian strategy as an exclusive ESS, reactive strategy as an
exclusive ESS, and both the strategies as ESS are marked with different colours. Whereas, the region where
mixed ESS exists i.e. certain non-zero fraction of the population plays Bayesian and the remaining fraction
adopts the reactive strategy, is denoted using a colour gradient such that its intensity (redness) indicates the
frequency of reactive strategy. Obviously, the mixed ESS should be absent in the finite population scenario.

4.1. Infinite population
Before we start discussing the ESS phase diagrams generated from our simulation, let us recall the condition
of ESS for a given payoff matrix П [18]: The reactive strategy is ESS in an infinite population if (a) πRR > πBR

or (b) πRR = πBR and πRB > πBB; similarly, The Bayesian strategy is ESS if (a) πBB > πRB or (b) πBB = πRB and
πBR > πRR. Finally, a mixed ESS is implied by the condition: πRR < πBR and πBB < πRB.

4.1.1. BTFT
In this subsection, we consider the competition between the reactive and BTFT strategy and analyse the ESS
phase diagram for a given discount factor and benefit-to-cost ratio. It is clear that diagram depends on the
nature of the reactive strategy competing with the Bayesian strategy. For low values of the benefit-to-cost
ratio (r) and the discount factor (δ) see figure 4(a), a host population of reactive strategy players can prevent
invasion by an infinitesimal fraction of a mutant Bayesian strategy as long as p+ q< 1 and p≲ 0.75.
Similarly, the Bayesian strategy is an ESS, and can therefore prevent invasion by any reactive strategy, as long
as p+ q> 1 and q≳ 0.25. In this region, a BTFT mutant can invade a reactive strategy.

Increasing either the benefit-to-cost ratio (r) or the discount factor (δ), or both, have a similar effects as
can be seen by comparing figures 4(b) and (d) with figure 4(a). Moreover, for a certain range of (p, q) values
lying in the region p+ q< 1, both reactive and Bayesian strategies are an ESS but the size and location of this
region varies as both r and δ changes. Another region shown in yellow corresponding to p+ q> 1 is
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Figure 4. ESS phase diagram for BTFT vs. reactive strategies in infinite population: Four subplots (a), (b), (c) and (d) respectively
correspond to r= 2 and δ= 0.75, r= 2 and δ= 0.99, r= 10 and δ= 0.75, and r= 10 and δ= 0.99. The color gradient, ranging
from zero to unity, marks the frequency of reactive strategy in the mixed ESS. Blue, green, and red colors, respectively, represent
three cases: BTFT and reactive strategy are both ESS’s, BTFT is the only ESS, and reactive is the only ESS. Few scattered white dots
correspond to absence of any ESS. The dashed white line and the solid white line—the analytically estimated
boundaries—respectively satisfy equations: q= 1− p and q= p− 1/r.

characterized by the stable coexistence between the reactive and BTFT strategy when neither of the strategies
is an exclusive ESS; rather a mixed ESS exists.

During the process of inferring the reactive opponent’s true strategy, the Bayesian player samples many
different (p, q) values as it acquires evidence based on the opponent’s actions. While the region of reactive
space from where (p, q) values are sampled becomes eventually restricted as evidence accumulates over
increasing number of rounds; initially, when evidence is sparse, the region can be large. The exact stochastic
trajectories of the Bayesian player in the reactive space is analytically intractable. However, given the sharp
phase boundaries in ESS phase diagrams, an explanation about why they appear as they do is worth
uncovering. Moreover, there are a few additional intriguing features of the ESS phase diagram that are worth
understanding, e.g. ALLD may not invade BTFT see figures 4(b) and (d) and ALLC is not completely
eliminated by a mutant BTFT but can coexist with the latter.

To this end, we present a useful ansatz, in the limit δ→ 1 and nf →∞: It is helpful to think of the BTFT
as an effective reactive strategy with p= q= 0.5. This ansatz is motivated by the fact that the BTFT strategy is
likely to sample a large number of (p,q) values during the process of updating her belief. Initially, the
Bayesian update rule may not be efficient in inferring the true (p,q) values of the opponent’s reactive strategy
since evidence is sparse. Hence, the sampled values of both p and q are likely to be equally distributed
between 0 and 1 leading to an average of 0.5 for each. We will see that even though this ansatz cannot explain
all aspects of the complex, evolutionary dynamics between the Bayesian and reactive strategies, it is successful
in explaining the aforementioned specific features of the dynamics. It is worth pointing out that the
effectiveness of ansatz owes to the early dynamics when the BTFT strategy is sampling the strategy space
while updating her beliefs but has not yet converged on to the opponent’s reactive strategy. During the latter
phase of the strategy update dynamics (i.e. when the BTFT strategy is close to the reactive strategy), the
contributions to the accumulated payoffs of both BTFT and reactive strategies are almost same, and hence,
not significant in deciding which one is ESS.

Now we note that any positive affine transformation of the payoff matrix, equation (9), keeps the ESS
invariant. Consequently, the condition for ESS is not affected if we consider the payoff matrix, П̄≡ (1− δ)П,
obtained from equation (9) by dividing each element of the matrix by the factor (1− δ)−1—the expected
length of the repeated game when nf →∞; each element of П̄ denotes the average payoff of the
corresponding interaction. When δ= 1, in the limit nf →∞, the average payoff can be written as
π̄ ≡ (1/nf) limnf→∞

∑nf
n=1 un [71]. It is convenient to calculate the average payoffs of the player with the

reactive strategy and the Bayesian player modelled (using our ansatz) as a reactive player with the strategy
(p= 0.5,q= 0.5) by merely recalling the standard result [16]: When two players, each with two reactive
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strategies—S≡ (p(r),q(r)) and S ′ ≡ (p ′(r),q ′(r))—play against each other, the payoff on playing S against S′

is given by

π̄SS ′ = (r− 1) c∞c ′∞ − c ′∞ (1− c ′∞)+ r(1− c∞) c ′∞. (10)

Here, the superscript∞ represents the limiting stationary cooperation probability given by
c∞ = q(r)/(1− p(r) + q(r)) and c ′∞ = q ′(r)/(1− p ′(r)+ q ′(r)) for the strategies S and the S′, respectively.

Now we are equipped to explain the features pointed out earlier. First, let us focus on the phase
boundaries. We have at any grid point of the reactive space, two strategies: R= (p(r) = p,q(r) = q) and
B= (p ′(r) = 0.5,q ′(r) = 0.5). The reactive strategy R is an ESS if π̄RR > π̄BR which, owing to equation (10),
leads to inequality r(p− q)(p+ q− 1)> (p+ q− 1), i.e.

q< p− 1

r
if p+ q> 1, (11a)

q> p− 1

r
if p+ q< 1. (11b)

This estimation is very promising as evident from figures 4(b) and (d): The regions (red and blue) with
reactive strategy as ESS satisfy inequalities (11). The lines p+ q= 1 (dashed white) and q= p− 1/r (solid
white) are almost precise estimates of the phase boundaries.

The evolutionary stability of the ALLC (p= 1,q= 1) and ALLD (p= 0,q= 0) strategies against the
Bayesian player depends on both r and δ, as is evident from figure 4. We first consider the game between
ALLC and BTFT. In the δ → 1 limit, coexistence is observed between ALLC and Bayesian strategy since
neither is an ESS see figures 4(b) and (d). When ALLC cooperates in the first round, the likelihood estimated
by the Bayesian player is P(C|p,q) = (p+ q)/2 which is maximum at (p,q) = (1,1). Since we start with a
uniform prior, the posterior probability P(p,q|C) used by the BTFT player to infer the strategy of ALLC
opponent also peaks at (p,q) = (1,1). ALLC cooperates in all subsequent rounds rendering the belief of
BTFT player fixed at (p,q) = (1,1). Hence, BTFT converges to the ALLC right after the first round, i.e. the
BTFT behaves as an effective reactive strategy with p= q= 1; her cumulative payoff is, thus, π̄BR = r− 1.
Clearly, π̄RB = π̄BR = r− 1. However, recall that by construction ALLC can also defect in the first round with
a probability of 0.5. Under such circumstances the Bayesian player’s belief cannot converge quickly to
(p,q) = (1,1); her belief tracks a stochastic trajectory in p-q space. Invoking the ansatz that BTFT effectively
act likes a reactive strategy with (p,q) = (1/2,1/2), we get π̄BR = (2r− 1)/2 and π̄RB = (r− 2)/2 using
equation (10). Ergo, the effective π̄BR should have contributions from the payoffs obtained by BTFT while
acting as reactive strategy (p,q) = (1/2,1/2) and reactive strategy (p,q) = (1,1). Since c1 = 0.5, we consider
that these contributions come with equal weights; and hence, the final effective π̄BR = [0.5(2r− 1)/2]+
0.5(r− 1) = r− 3/4. Similarly, π̄RB = [0.5(r− 2)/2] + 0.5(r− 1) = (3r/4)− 1 respectively.

In order to show the coexistence of ALLC and BTFT, we must show that neither ALLC nor BTFT is an
ESS i.e. π̄RR < π̄BR and π̄BB < π̄RB. While we just calculated π̄BR and π̄RB, π̄RR = (r− 1) but π̄BB remains to be
estimated. When two BTFT players play against each other, their payoffs depend on whether the action
profile in the very first round is (C,C), (D,D), or (C,D) (equivalently, (D,C)) which corresponds to the
Bayesian players effectively playing ALLC, ALLD and reactive strategy with (p,q) = (0.5,0.5) respectively.
Since c1 = 0.5, the three forms of the BTFT should be respectively associated with weight factors 0.25, 0.25
and 0.5 for the calculation of the payoff. The weighted payoff, thus, is given by π̄BB = 0.25(r− 1)+ 0.25(0)+
0.5(r− 1)/2= (r− 1)/2. Evidently, π̄RR < π̄BR always holds good, whereas π̄BB < π̄RB implies r> 2. Of
course, this is not a strict bound given the non-rigorous assumptions made about the BTFT’s dynamics and
the mean-field nature of the arguments. Nevertheless, it is remarkable, how we arrive at a condition on the
benefit-to-cost ratio (keeping δ→ 1) for which the coexistence of ALLC and BTFT is a distinct possibility.

Finally, the case of ALLD vs. BTFT may be treated in a similar manner to show that ALLDmay not invade
BTFT. While playing against ALLD, the BTFT acts like ALLD after the first round if ALLD defects in the first
round (since the likelihood function P(D|p,q) = (2− p− q)/2 is maximum at p= q= 0) and she plays like a
reactive strategy with (p= 0.5,q= 0.5) if ALLD cooperates in the first round. The weight factors associated
with these two roles of BTFT are each equal to 0.5. Hence the weighted payoffs are π̄BR =−1/4 and
π̄RB = r/4, and π̄RR = 0. π̄BB = (r− 1)/2 was already estimated in the preceding paragraph. ALLD is an ESS
if π̄RR > π̄BR which is trivially satisfied and the Bayesian strategy is an ESS if π̄BB > π̄RB which is satisfied for
r> 2. This accounts for the observation see figures 4(b) and (d) that both ALLD and Bayesian strategies are
ESS’s.

4.1.2. NBTFT
When the Bayesian player chooses not to reciprocate fully, she modifies her strategy to an NBTFT strategy
that results in her cooperating with probabilities (p ′,q ′) that are lower than her belief (pmax,qmax) about

9



New J. Phys. 26 (2024) 063003 A Patra et al

Figure 5. ESS phase diagram for NBTFT vs. reactive strategies in infinite population: Two sets of subplots, viz., {a,b, c,d} and
{e, f,g,h} respectively correspond to two non-reciprocity parameter values ν= 0.3 and ν= 0.5. For each set, four subplots are
arranged in a 2 × 2 grid corresponding to two different discount factors δ ∈ {0.75,0.99} and two benefit-to-cost ratio parameter
values r ∈ {2,10}. The color gradient, ranging from zero to unity, marks the frequency of reactive strategy in the mixed ESS. Blue,
green, and red colors, respectively, represent three cases: BTFT and reactive strategy are both ESS’s, BTFT is the only ESS, and
reactive is the only ESS. Few scattered white dots correspond to absence of any ESS.

opponent’s (p, q) value. This way she can potentially exploit the reactive opponent more frequently and
thereby acquire a larger cumulative payoff. Hence such a strategy is able to resist invasion by a reactive
counterpart over a larger region of reactive strategy space as can be seen by comparing the cases of r= 2 in
figure 5 with that in figure 4. Here the region of dominance of NBTFT strategy increases with increasing ν
which quantifies the extent of non-reciprocity of the NBTFT strategy compared to the BTFT strategy
(figures 5(a) and (b) vs. Figures 5(e) and (f). This advantage is most pronounced for higher (p, q) values and
less effective for reactive opponents with low (p, q) values.

However, the advantages of NBTFT decreases as the benefit-to-cost ratio of cooperation increases
(compare upper panels with lower panels of figure 5). Specifically, we observe that for r= 10, NBTFT is ESS
only in regions characterized by smaller values of both (p, q) and small p, large q. This is because the much
larger benefit for mutual cooperation (compared to mutual defection) that accrues over time outweighs the
occasional advantage of selfish behaviour exhibited by the NBTFT player. Reactive strategies with large q are
more prone to exploitation by NBTFT since they have a higher likelihood of cooperating even when the
NBTFT opponent defects.

With increasing δ, the contributions to payoff from later rounds carry almost as much weight as the
contributions from earlier rounds. It is also important to note that the NBTFT player keeps updating her
belief and as her belief converges towards the true belief about her reactive opponent with increasing number
of rounds, her ability to exploit the cooperative nature of her reactive opponent is limited to those reactive
strategies with higher q values compare figures 5(a)–(d). The dominance of NBTFT strategies is lost when
both r and δ increase see figures 5(d) and (h) indicating that increased benefits from mutual cooperation
over mutual defection as well as enhanced contribution to total payoff from later rounds increasingly favour
reactive strategies with q< p, leading to their dominance for q< p see figures 5(d) and (h) and coexistence of
NBTFT and reactive strategies is seen only for q> p see figures 5(d) and (h). NBTFT is found to dominate
only in a small sliver of region around q= 0 and q= 1.

4.1.3. GBTFT
If the strategic response is more generous than BTFT (i.e. p ′

n+1 > pmax
n and q ′

n+1 > qmax
n ), the corresponding

GBTFT player is easily exploited by the reactive opponent for most values of (p, q) when both r and δ are
small (compare figures 4(a) and 6(a). GBTFT can resist invasion by a reactive strategy only if the reactive
opponent’s are highly cooperative, i.e. both p and q are sufficiently high (see figure 6(a). As expected, when r
is low, for a given δ, the region of (p, q) space where GBTFT is an ESS, shrinks even further as γ increases
(compare figures 6(a) and (e). Recall that γ—as defined in equations (6a) and (6b)—quantifies the extent of
generosity shown by the GBTFT player.
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Figure 6. ESS phase diagram for GBTFT vs. reactive strategies in infinite population: Two sets of subplots, viz., {a,b,c,d} and
{e,f,g,h} respectively correspond to two non-reciprocity parameter values γ= 0.3 and γ= 0.5. For each set, four subplots are
arranged in a 2 × 2 grid corresponding to two different discount factors δ ∈ {0.75,0.99} and two benefit-to-cost ratio parameter
values r ∈ {2,10}. The color gradient, ranging from zero to unity, marks the frequency of reactive strategy in the mixed ESS. Blue,
green, and red colors, respectively, represent three cases: BTFT and reactive strategy are both ESS’s, BTFT is the only ESS, and
reactive is the only ESS. Few scattered white dots correspond to absence of any ESS.

As the benefit-to-cost ratio r of cooperation increases, more cooperative strategies gain an advantage
from the larger payoff received for mutual cooperation which offsets the cost of being exploited by the
opponent’s selfish behaviour. For this reason, reactive strategies with high (p, q) outperform their Bayesian
counterpart and are therefore stable against invasion by GBTFT (see figure 6(c). On the other hand, GBTFT
dominates over the reactive counterparts when the probability of reciprocal cooperation, p, for reactive
strategy is above a certain threshold value of q: p= q+ ϵ, ϵ≈ 0.15 (r= 10 and δ= 0.75). For such types of
reactive opponent’s, GBTFT can reap the large benefit of mutual cooperation while occasionally exploiting
the cooperative nature of the reactive opponent. A region of reactive strategy space where both strategies are
ESS’s also emerges (blue region in figure 6(c).

With an increase in the discount factor (δ), the region of (p, q) space where GBTFT dominates changes to
one characterized by high p and low q. This region increases with increased benefit-to-cost ratio (compare
figure 6(b) with figure 6(d) and the generosity parameter γ (compare with figures 6(d) and (h) since the
enhanced advantage of mutual cooperation carry more weight over larger time scales (due to larger δ).

4.2. Finite population
In finite populations, evolutionary stability of a Bayesian strategy is dependent on the population size N.
Consequently, the ESS condition needs to be appropriately modified [89] to ensure that a single reactive
mutant has a lower fitness than the Bayesian strategy and selection opposes the fixation of reactive mutant,
i.e. the fixation probability ρR of reactive strategy is less than 1/N. The former condition leads to
(N− 1)πRB < πBR +(N− 2)πBB while the latter leads to (N− 2)πRR +(2N− 1)πRB < (N+ 1)πBR

+(2N− 4)πBB under the assumption of weak selection. Similarly, the evolutionary stability of a reactive
strategy implies that the conditions (i)(N− 1)πBR < πRB +(N− 2)πRR and (ii)(N− 2)πBB +(2N− 1)πBR

< (N+ 1)πRB +(2N− 4)πRR are simultaneously satisfied. In finite populations, there are only two absorbing
states corresponding to a population consisting only of either the Bayesian strategy or the reactive strategy.
Hence a mixed phase where both strategies coexist is not possible.

For N = 2, the game is played between a single Bayesian and a single reactive player, and the
aforementioned conditions of ESS simply boils down to πRB > πBR for the reactive strategy to be an ESS and
πBR > πRB for the Bayesian strategy to be an ESS. In other words, the condition for evolutionary stability
depends on which of the two strategies has a larger average payoff when playing against the other. From
figure 7, it is clear that reactive strategies dominate over their Bayesian (BTFT) counterparts as long as
p+ q< 1.

This can be rationalized through the ansatz that the Bayesian strategy may be thought as an effective
reactive strategy with p= q= 0.5. Thus, as before, calculations yield π̄RB = (r− p− q)/2 and
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Figure 7. ESS phase diagram for a repeated 2-player game between the Bayesian strategies and the reactive strategies for a finite
population of size N= 2: Subplots (a), (b), and (c) represent three Bayesian strategies; BTFT, NBTFT with non-reciprocity
parameter ν= 0.3, and GBTFT with generosity parameter γ= 0.3, respectively. In each subplot, the red color denotes that the
reactive strategy is an ESS, green color denotes that the Bayesian strategy is ESS. Few scattered white dots correspond to absence of
any ESS for those (p,q) values.

Figure 8. Histogram of different interactions generated in a repeated two-player game with reactive and Bayesian strategies:
Subplots (a), (b), and (c), respectively, correspond to the interaction of the three Bayesian strategies; BTFT, NBTFT (with ν= 0.5)
and GBTFT (with γ= 0.5) with a reactive strategy defined by (0.5,0.6,0.5). The game is played over 700 rounds and the
frequency of each interaction pair is obtained by averaging over 104 distinct trials. The first and the second actions correspond to
those of the reactive and the Bayesian player respectively.

π̄BR = [r(p+ q)− 1]/2 where (p, q) denote the opponent’s reactive strategy. Thus, the condition for the
reactive strategy to beat the Bayesian one gets recast as (r− p− q)/2> [r(p+ q)− 1]/2 which implies the
condition p+ q< 1. Interestingly, the condition is independent of the benefit-to-cost ratio r as observed
from figure 7.

When the Bayesian strategy chooses to be more selfish (NBTFT) than is dictated by her perceived belief
about their reactive opponent’s strategy, it dominates over the reactive strategy over a much larger region of
(p, q) space (figure 7(b)). As δ increases, the size of this region increases with NBTFT dominating all but the
most selfish strategies (see figure 7(b). The NBTFT player, by virtue of her ability to explore the strategy
space in the process of inferring her opponent’s strategy, is more effective in exploiting her reactive opponent
(see figure 7(b), leading to a larger average payoff for herself. The situation is reversed when the Bayesian
strategy is GBTFT (see figure 7(c), i.e, more generous. The reactive strategy dominates over a larger region of
strategy space as δ increases, indicating that it is better able to exploit the generosity of the BTFT strategy (see
figure 7(c) to increase her average payoff.

These observations can be explained by noting that in contrast to the BTFT case (comparing figures 8(a)
and (b); the fewer average number of C-C interactions and larger average number of D-D interactions
between the NBTFT and the reactive player ensures that higher benefits of mutual cooperation does not
accrue as much. Similarly, comparing figures 8(a) and (c), we note that even though the number of C-C
interactions is larger in the latter case, the significantly larger (on average) number of D-C interactions
(indicative of the reactive player more frequently exploiting the GBTFT player) neutralizes the increased
benefits of mutual cooperation.
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Another interesting observation is that although both BTFT and GBTFT can be ESS—see figure 4 and
figure 6—against the reactive strategies (including the ones close to ALLD in the reactive strategy space) for
large r and δ, it is evident from figure 8 that the mutual cooperation rendered by a GBTFT strategy is more
than what the BTFT strategy achieves. In other words, the GBTFT strategy is comparatively more capable of
increasing the level of cooperation within the population.

As the population size increases, the ESS phase diagram in (p, q) space approaches the infinite population
limit as can be seen by comparing the N = 100 case in figures 9(a)–(c) with the corresponding panels in
figures 4–6. It should be noted the mixed ESS (coexisting reactive and Bayesian players) does not exist in the
finite population scenario because there are two absorbing states which can be an ESS. Hence, wherever there
is a mixed ESS in the infinite population case, a white region (No ESS) appears in the corresponding ESS
phase diagram for finite populations.

5. Discussion

Can a strategy that attempts to learn the fixed reactive strategy of the opponent prevent being out-competed
by extremely selfish strategies like (p∼ 0,q∼ 0) in a repeated PD game? The answer depends critically on the
relative benefit of cooperation (r), the discount factor (δ) and on the nature of the strategy (BTFT, GBTFT, or
NBTFT) employed by the Bayesian player to update her actions. For low r and δ, predominantly selfish
strategies dominate over Bayesian learning strategies see figures 4(a), 5(a) and 6(a). But the situation changes
with increase in the discount factor see figures 4(b), 5(b) and 6(b). As r increases, the Bayesian learning
strategies are always effective at resisting invasion by selfish reactive strategies even for low discount factors
see figures 4(c), 5(c) and 6(c).

Even though the Bayesian player may end up being more cooperative than extremely selfish strategies
during the exploration phase of the game when she is trying to learn the strategy of her opponent, she avoids
exploitation in the long run by gradually becoming more selfish through effective learning of her opponent’s
strategy. In general, the success of a Bayesian player depends on the extent to which she can leverage the
higher benefits of mutual cooperation against a cooperative opponent while avoiding being exploited by a
more selfish opponent.

Reactive strategies form just a subset of the larger class of Markovian memory-one strategies. Our results
can be easily extended to see how Bayesian strategies fare against more cognitively sophisticated Markovian
strategies [50]. Bayesian inference in evolutionary games provides a powerful learning framework applicable
to other social dilemmas that can be modeled through the public goods game. In such situations each
individual would take into account the actions of other members of her community to update her belief
about cooperation levels of the group and tune her actions accordingly. It would be interesting to see how
Bayesian learning compares with other strategy update mechanisms like pairwise comparison and
reinforcement learning in such scenarios. Moreover, we envisage a future study where one addresses what
happens if a Bayesian learner adopts the best response strategy based on their belief. Another aspect that can
be investigated in future involves relaxing the assumptions that the reactive player does not make any error
while employing her strategy and that the payoff matrix remains unchanged over rounds. The payoff matrix
itself can be subject to fluctuations as in the case of stochastic games. In such noisy situations, the Bayesian
player’s belief about the opponent may not converge to the true belief and may keep fluctuating even at long
time scales. Furthermore, the Bayesian player herself can make errors while employing her strategy. The
extent of impact of all such noisy effects is likely to depend on the noise strength and may modify our
conclusions only for large noise strength.

In order to better understand the key underlying causes behind altruistic behaviour in the natural world,
it is important to take into account realistic ways in which animals learn and take decisions. Decision making
is often modulated by learning as well as cognitive constraints in factoring and processing a diverse range of
stimuli from the environment. Accounting for those constraints will enable us to build more realistic models
for understanding altruistic behaviour in social groups. The Bayesian framework developed in this work is
the first step in incorporating sophisticated statistical learning mechanisms like Bayesian learning in altruistic
decision-making. We hope to eventually address scenarios in which deviations from Bayesian inference,
perhaps induced by cognitive constraints, can also affect patterns of altruistic behaviour in social groups.
Such investigations will hopefully make it possible to design and implement protocols that encourage
altruistic behaviour leading to greater benefits for society at large.
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Figure 9. ESS phase diagram for Bayesian strategies vs. reactive strategies in finite populations of sizes N= 6 and N= 100:
Subplots (a), (b), and (c) represent three Bayesian strategies; BTFT, NBTFT with non-reciprocity parameter ν= 0.3, and GBTFT
with generosity parameter γ= 0.3, respectively. In each subplot, while red color denotes that reactive strategy is ESS, green color
denotes that Bayesian strategy is ESS. The white color corresponds to absence of any ESS.
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