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Write 6(U) for set of holomorphic functions on U.
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and it really does become a polynomial in z and z. E.g.,
2x1 +2y1 +4y3 = (1 —i)z1 + (1 + )21 — 23 + 2202, — 23

f is holomorphic if it does not depend on Z.

If f is real-analytic (has a power series in x and y), then f has a power
series in z and Z.

f is holomorphic if the power series only has z terms.

Treat z and Z as separate variables.
f(z,Z) becomes f(z, &). This is called complexification.

We must worry about convergence! More on all this later.
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Theorem (Hartogs)

Let U c C", n = 2, be a domain, and K cc U be compact with U \ K
connected. If f € O(U \ K), then there exists a unique F € O(U) such that

Fluk =f.

Note: Not every domain is a natural domain of definition for a holomorphic
function. Geometry of the boundary plays a role!
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IfU,V cC"andf: U — V is holomorphic (every component is
holomorphic), bijective, and f~! is holomorphic, then f is a
biholomorphism and U and V are biholomorphic.

Remark: f~! is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic
invariants of the boundary of U are invariants of the boundary of V.

Example: U = B(0,2) \ B(0, 1). The outer (convex) and the inner
(concave) boundaries have very different properties. In fact it is a
form of “convexity” that we need to study to understand boundaries.
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More explicitly,

n

J J L or
X, = Zak3| +hig|, € COTM & ;akg azki = 0.

And

& 0 & 0
Xp = Z”"g_zkha € T;(}'O)M < Zaka_zrkLﬂ =0.
k=1

Example: Imz, = 222 = 0 defines M = C""! xR c C".
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If M c C" is a smooth real submanifold (any dimension), do the same:

T(1 0) M def (

CeT,M) N (Ty"C"),  and

def (

TYM = (Co T,M) n (TVVC").

Now
CoT,M=Ty"Me T "M B,.

If T;l’O)M and T;O’l)M have constant dimension as p ranges over M,
then M is called a CR submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

Example 1: M = R? c C2.

"M = {0}, T""M=1{0}, B,=C®T,M.
Example 2: M = C x {0} c C2.
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Suppose M C C" is a smooth real hypersurface, p € M. After a
translation and rotation via a unitary matrix, p = 0 and near the origin
M is written in variables (z, w) € C""! x C (w = z,) as

Imw = ¢(z,z, Rew),

with the ¢(0) and dgp(0) = 0.

Consequently

1,00y, _ J J |
T, 7'M = ..., —

0 Spalic {821 o 9z 0} !
d

Oy _ J ’
T"'M = — == (.
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d
Bo =spar1@ mL) .

In particular, dim¢ T;l’O)M = dim¢ T;,O’l) M =n-1and dimc B, = 1.
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Suppose M = {r = 0} as before, and p € M.

Write the (full) Hessian of r at p as the Hermitian matrix
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Write the (full) Hessian of r at p as the Hermitian matrix

[ 9% | L. 2%r %r | . 2%r |
(921(92] )4 (921(927, 14 (921(921 )4 82](92” 14
2%r | L. 2%r 2%r i L. 2*r —-—
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M is (strictly if inequality strict) convex at p (really one side of M is) if
X;HpXp 20 forall X, € C® T,M.

A complex linear change of coordinates A: C" — C" acts like

o allz #llo a-[Ae @
Z L A| " |ATZA (ALA)
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L,= __r| is called the complex Hessian (an n X n matrix).
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For X, € Tl(,l’O)M (n — 1 dimensional space),
X,LpXp

is called the Levi-form at p.
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Consider the Hessian H,, = [ z, L;,

} (an 21 X 2n matrix)

(92
L,= __r| is called the complex Hessian (an n X n matrix).
aZkaZg Plie

For X, € Tl(,l’o)M (n — 1 dimensional space),

X,LpXp

is called the Levi-form at p.
S0 (1,0) S or
. 1,0 - _ -
Explicitly, X, = Zaka_sz’ eT,”"M iff Xpr= kZ_;aka_sz’ =0,
and .
*r
X*L,X, = Gy — . .
p=PeP
k=T0=1 aZkCQZg 4

Exercise: Hy, and L, depend on the defining function r, but their
inertia on the tangent space does not change if we change the defining
function r. (Assume the new r is negative on the same side of M).



