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Small review:
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L, is the complex Hessian.

X3LyX, for X, € Ty M is the Levi form.
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= inertia of the Levi-form is a biholomorphic invariant!
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strictly or strongly pseucodonvex if X3L,X), > 0 for Xp, # 0.

Note the similarity of the definition to classical convexity.
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If U c C" is a domain with smooth boundary, U = {r < 0}, and dr # 0
near dU, then U is pseudoconvex if JU = {r = 0} is pseudoconvex.

Pseudoconvex domains are the natural domains of definition for
holomorphic functions.
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Example 2: In (z, w) € C?, the set the domain H; = {Imw > 0} is
pseudoconvex atallp e M = dH, = C x R.

But so is the domain H_ = {Imw < 0}.

SoM =C xR = {Imw = 0} is pseudoconvex from both sides
(we call that Levi-flat).
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Let m,: C® T,M — Ce TPM/T;LO) Me T;0,1) M =By

be the natural projection.

Extend a vector X, € T,(,l’O)M to a vector field X in TLOM.

Then define the intrinsic Levi-form as
g(}(}7/ y}7) = T(P ([X/ )_<] |p)

This definition works in any codimension, and is completely intrinsic.

Exercise: Work out that this definition gives a form that has the same
inertia as the previous definition.
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Diagonalizing A and rescaling

Imw = Aq|z1)* + - + Auct|ze1/? + O(3) where Ay = 0or +1.
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There are other smooth CR functions.

Example: Suppose M = {Imw = 0}, and f: M — C is e-1/Rew)” jf
Rew # 0 and 0 if Rew = 0. Then f is CR, C*, but f is not real-analytic,
so not a restriction of a holomorphic function.

We will see that for real-analytic M and f, CR functions are restrictions
of holomorphic functions.

For two CR submanifolds M and N, f: M — N is a CR mapping if
each component of f is a CR function.

M and N are CR diffeomorphic if there is a diffeomorphism f: M — N
such that f and f~! are CR.



