Details of MA5219 (Spring 2025)

Level: 5 Type: Theory Credits: 4.0

Course CodeCourse NameInstructor(s)
MA5219 Analytic Number Theory Soumya Bhattacharya

Syllabus
Divergence of the sum of the reciprocals of the primes, Chebyshevs estimates for the prime counting function, Bertrands postulate.

Dirichlet convolution, Moebius inversion formula, the ring of arithmetic functions, Dirichlets hyperbola method, analytic properties of Dirichlet series, Mertens three estimates, properties of the Riemann Zeta function, Dirichlets theorem on primes in arithmetic progression, the Prime Number Theorem.
Elements of Sieve Theory, the sieve of Eratostenes, the Brun sieve, convergence of the sum of the reciprocals of the twin primes.

Modular groups, classical modular functions and modular forms, the fundamental domain of the full modular group, the valence formula, the dimension of the space of modular forms, cusp forms, Hecke operators.

Prerequisite
Prerequisites:

1. Algebra III (MA4101)
2. Representation Theory of Finite Groups (MA4204)
3. Topics in Complex Analysis (MA5106)

References
Textbooks:
1. Luca F., De Koninck J-M., Analytic Number Theory
2. Iwaniec H., Kowalski E., Analytic Number Theory
3. Bruinier J-H., van der Geer G., Harder G., Zagier D., The 1-2-3 of Modular Forms

References:
1. Davenport H., Multiplicative Number Theory
2. Serre J-P., A Course in Arithmetic
3. Ireland K., Rosen M., A Classical Introduction to Modern Number Theory
4. Tenenbaum G., Introduction to Analytic and Probabilistic Number Theory
5. Koukoulopoulos D., The Distribution of Prime Numbers
6. Friedlander J., Iwaniec H., Opera de Cribro
7. Apostol T., Introduction to Analytic Number Theory

Course Credit Options

Sl. No.ProgrammeSemester NoCourse Choice
1 IP 2 Not Allowed
2 IP 4 Not Allowed
3 IP 6 Not Allowed
4 MP 2 Not Allowed
5 MP 4 Elective
6 MR 2 Not Allowed
7 MR 4 Not Allowed
8 MS 10 Elective
9 MS 4 Not Allowed
10 MS 6 Not Allowed
11 MS 8 Not Allowed
12 RS 1 Elective
13 RS 2 Elective